Izvestiya, Atmospheric and Oceanic Physics

, Volume 46, Issue 7, pp 820–829 | Cite as

Extremely low magnetic fields as a factor of modulation and synchronization of infradian biorhythms in animals

  • V. S. Martynyuk
  • N. A. Temur’yants
Article

Abstract

The studies of the influence that a magnetic field (MF) with a frequency of 8 Hz has on the infradian rhythms of physiological and metabolic processes indexes in animals have been carried out in order to verify the hypothesis on the synchronizing effect of natural electromagnetic fields. It is shown that the MF effect has alternating characteristics of the time organization of energetic physiological and metabolic processes in animal organisms in an infradian range and the partial smoothing of biorhythmic deviations between individual-typological groups of organisms occurs for single processes. This (i) shows the common system reaction mechanisms that the organisms of animals have to the effect of a certain factor and (ii) is evidence of the synchronizing influence of the daily influence of magnetic fields of extremely low frequencies on populations of organisms with initially different biorhythmic types. It has been concluded that the stable variations of electromagnetic background, including natural, can serve as a timer for biorhythms in a wide range of periods.

Keywords

magnetic fields of extremely low frequencies infradian biorhythms modulation and synchronization of biorhythms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. V. Aleksandrov, The Ecological Role of Electromagnetism (Izd. Politekhn. Univ., St. Petersburg, 2005) [in Russian].Google Scholar
  2. O. I. Aptikaeva, A. G. Gamburtsev, V. A. Galichii, and S. I. Stepanova, “The Use of Biorhythmological Experiment in Predicting the State of Biological Systems and Geodynamics,” Geofiz. Prots. Biosfera 7(1), 32–52 (2008).Google Scholar
  3. T. K. Breus and S. I. Rapoport, Magnetic Storms: Medical and Biological and Geophysical Aspects (Sovetskii sport, Moscow, 2003) [in Russian].Google Scholar
  4. T. K. Breus, S. M. Chibisov, R. M. Baevskii, and K. V. Shebzukhov, Chronostructure of Heart Biorhythms of the Environment (Izd. RUDN, Moscow, 2002) [in Russian].Google Scholar
  5. P. V. Vasilik and A. K. Galitskii, “Rhythms of Change in the Properties of Water as a Factor in the Formation of Biological Rhythms,” Kibern. Vychislit. Tekhn. 66, 11–19 (1985).Google Scholar
  6. P. V. Vasilik and A. G. Vasilega, “Characteristics of Mass Change of Guinea Pigs as an Indicator of Fluctuations in the Earth’s Rotation Irregularity Caused by the Effect of the Moon on the Body,” Geofiz. Prots. Biosfera 3(1), 58–62 (2004).Google Scholar
  7. B. M. Vladimirskii, “Electromagnetic Fields of Environment, “Dowsing,” and Homing,” Geofiz. Prots. Biosfera 5(1), 5–17 (2006).Google Scholar
  8. B. M. Vladimirskii and N. A. Temur’yants, The Influence of Solar Activity on the Biosphere and Atmosphere (Izd. MNEPU, Moscow, 2000) [in Russian].Google Scholar
  9. A. G. Gamburtsev, S. M. Chibisov, and D. G. Strelkov, “Variations in Blood Pressure and Heart Rate According to Multidiurnal Monitoring and Their Possible Association with External Influences,” Geofiz. Prots. Biosfera 7(2), 53–66 (2008).Google Scholar
  10. V. V. Gederim, V. V. Sokolovskii, E. S. Gorshkov, et al., “Periodic Changes in Some Hematological Parameters Characterizing the Process of Adaptation in the Human Body, and Variations in the Gravitational Field,” Biofizika, 46, 833–834 (2001).Google Scholar
  11. L. Glass and M. C. Mackey, From Clocks to Chaos: The Rhythms of Life (Mir, Moscow, 1991; Princeton Univ. Press, Princeton, 1988).Google Scholar
  12. P. E. Grigorev, Candidate’s Dissertation in Biology (Simferopol, 2005).Google Scholar
  13. P. E. Grigorev, V. S. Martinyuk, and N. A. Temur’yants, “Relathioship between the Activity of Dehydrogenases with Heliogeophysical Factors,” Geofiz. Prots. Biosfera 4(1/2), 71–75 (2005).Google Scholar
  14. S. Dan and Yu. Ashoff, Biological Rhythms (Mir, Moscow, 1984) [in Russian].Google Scholar
  15. A. P. Dubrov, Moon Rhythms in Humans (Meditsina, Moscow, 1990) [in Russian].Google Scholar
  16. I. P. Emelyanov, Structure of Biological Rhythms of Humans during Adaptation: Statistical Analysis and Modeling (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  17. T. A. Zenchenko, A. M. Merzlyi, and B. M. Kuzhevskii, “Effects of Change in the Polarity of Interplanetary Magnetic Field in the Dynamics of Aviational Processes,” in Proc. Int. Conf. “Space Weather: It Effect on Humans and Biological Objects”, Moscow, February 17–19, 2005 (Moscow, 2006), p. 46.Google Scholar
  18. T. A. Zenchenko and A. M. Merzlyi, “Relationship Dynamics of Aviation Events with Heliophysical Processes,” Geofiz. Prots. Biosfera 7(2), 27–38.Google Scholar
  19. F. I. Komarov and S. I. Rapoport, Chronobilogy and Chronomedicine (Triada-Kh, Moscow, 2000) [in Russian].Google Scholar
  20. A. V. Li and I. G. Vlasova, “The Role of Magnetic Fields in the Formation of Biological Rhythms of the Central Nervous System,” in Modern Aspects of Biorhythmology (Izd. RUDN, Moscow, 1987) [in Russian].Google Scholar
  21. A. A. Maksimovich, “Structure and Function of the Pineal Gland of Vertebrates,” Zh. Evol. Biokhim. Fiziol. 38(1), 3–13 (2002).Google Scholar
  22. V. S. Martinyuk, Doctoral Dissertation in Biology (Kyiv, 2008).Google Scholar
  23. V. S. Martynyuk, “On the Synchronizing Effect of Ultralow Magnetic Fields on Biological Systems,” Biofizika 37(4), 569–573 (1992).Google Scholar
  24. V. S. Martynyuk, “The Temporal Organization of Living Organisms and the Problem of Reproducibility of Results of Magnetobiological Studies,” Biofizika 40(5), 925–927 (1995).Google Scholar
  25. V. S. Martynyuk, “Diurnal Geo- and Heliophysical Significant Periods in the Integral Rhythms of Locomotor Activity of Animals,” Biofizika 43(5), 789–796 (1998).Google Scholar
  26. V. S. Martynyuk, “Relationship between the Dynamics of Electrical Characteristics of the Human Body with the Variations of Space Weather,” Geofiz. Prots. Biosfera 4(1), 53–61 (2005).Google Scholar
  27. V. S. Martynyuk and S. B. Martynyuk, “Effect of Environmentally Significant Variable Magnetic Field on the Metabolic Processes in the Brain of Animals,” Biofizika, 46(5), 876–880 (2001).Google Scholar
  28. V. S. Martynyuk, B. M. Vladimirskii, and N. A. Temur’yants, “Biological Rhythms and Electromagnetic Fields of the Environment,” Geofiz. Prots. Biosfera 5(1), 5–23 (2006).Google Scholar
  29. V. S. Martynyuk, N. A. Temur’yants, and B. M. Vladimirskii, There is no Bad Weather in Nature: Space Weather in Our Lives (Izd. V.S. Martynyuk, Kiev, 2008) [in Russian].Google Scholar
  30. R. N. Nartsissov, “The Use of n-Nitrotetrazolium Violet for Quantitative Cytochemical Determination of Human Lymphocyte Dehydrogenases,” Arkhiv Anatom. Gistol. Embriol., No. 8, 73 (1969).Google Scholar
  31. R. P. Nartsissov, V. M. Shishchenko, and S. V. Petrichuk, “Effect of Environmental Factors on the Enzyme Status of Human Blood Leukocytes,” in Modern Problem of Study and Conservation of the Biosphere (Gidrometeoizdat, St. Petersburg, 2007), Vol. 2 [in Russian].Google Scholar
  32. Yu. R. Rivin, “Pulse of a Healthy Person and Geomagnetic Activity,” Geofiz. Prots. Biosfera 3(2), 46–56 (2004).Google Scholar
  33. S. I. Stepanova, Topical Problems of Space Biorhythmology (Nauka, Moscow, 1977) [in Russian].Google Scholar
  34. I. A. Stepanyuk, Electromagnetic Fields in Aero- and Hydro physical Processes (Izd. RGGMU, St. Petersburg, 2002) [in Russian].Google Scholar
  35. O. G. Tatkov, “Chronobiological Aspects of Adaptation: Desynchronoses,” Voen.-Med. Zh. No. 6, 49–52 (2004).Google Scholar
  36. N. A. Temur’yants, Doctoral Dissertation in Biology (Moscow, 1999).Google Scholar
  37. N. A. Temur’yants and E. Yu. Grabovskaya, “Reaction of Rats with Various Constitutional Features to the Effect of Weak Variable Magnetic Fields of Extremely Low Frequency,” Biofizika 37(4), 817–820 (1992).Google Scholar
  38. N. A. Temur’yants and A. V. Shekhotkin, “Modern Ideas on the Mechanisms of Electromagnetic Effects,” Vestn. Fizioter. Kurortologii 5(1), 8–13 (1999).Google Scholar
  39. N. A. Temur’yants, B. M. Vladimirskii, and O. G. Tishkin, Ultralow Frequency Electromagnetic Signals in Biological World (Naukova Dumka, Kiev, 1992) [in Russian].Google Scholar
  40. N. A. Temur’yants, V. V. Makeev, and V. N. Malygina, “The Effect of Weak Variable Extremely low Frequency Magnetic Fields on the Infra-Day Rhythm of the Rat Sympathoadrenal System,” Biofizika 37(4), 653–655 (1992b).Google Scholar
  41. N. A. Temur’yants, V. S. Martynyuk, and V. I. Malygina, “The State of the Sympathoadrenal System during Isolated and Hypoxia-Combined Effect of Variable Magnetic Field of Ultralow Frequency,” Fizika zhivogo 15(2), 40–48 (2007).Google Scholar
  42. A. T. Uinfri, Time according to Biological Clock (Mir, Moscow, 1990) [in Russian].Google Scholar
  43. P. Faraone, A. A. Konradov, T. A. Zenchenko, and B. M. Vladimirskii, “Heliophysical Effects in Daily Characteristics of Life Activity of Bacteria,” Geofiz. Prots. Biosfera 4(1/2), 89–97 (2005).Google Scholar
  44. Yu. A. Kholodov and M. A. Shchishlo, Electromagnetic Fields in Neurophysiology (Nauka, Moscow, 1979) [in Russian].Google Scholar
  45. J. B. Burch, J. S. Reif, and M. G. Yost, “Geomagnetic Disturbances Are Associated with Redused Nocturnal Excretion of a Melatonin Metabolite in Human,” Neurosci. Lett. 266(3), 209–212 (1999).CrossRefGoogle Scholar
  46. J. B. Burch, J. S. Reif, C. W. Noonan, T. Ichinose, A. Bachand, T. Koleber, and M. G. Yost, “Melatonin Metabolite Excretion among Cellular Telephone Users,” in Abstr. Bioelectromagnetics Society Annual Meeting (Wailea, 2003).Google Scholar
  47. S. E. Doyle, A. M. Castrucci, M. McCall, I. Provencio, M. Menaker, “Nonvisual, Light Responses in the Rpe65 Knockout Mouse: Rod Loss Restores Sensitivity to the Melanopsin System,” Proc. Natl. Acad. Sci. USA 103(27), 10432–10437 (2006).CrossRefGoogle Scholar
  48. M. Feychting, F. Jonsson, N. Pedersen, and A. Ahlbom, “Occupational Magnetic Field Exposure and Neurodegenerative Disease,” in Abstr. Bioelectromagnetics Society Annual Meeting (Wailea, 2003).Google Scholar
  49. F. Halberg, “Challenges from 60 Years of Translational Chronobiology,” Uchen. Zapiski Tavrich. Nats. Univ. 20(1), 107–122 (2007).Google Scholar
  50. S. Kaplow, “A Histochemical Procedure for Localizing and Evaluation Leukocyte Alkaline Phosphatase Activity in Smears of Blood and Marrow,” Blood, No. 10, 1023–1029 (1955).Google Scholar
  51. M. Kato and T. Shigemitsu, “Effects of Exposure to 50 Hz Magnetic Field on Melatonin in Rats,” in Biological Effects of Magnetic and Electromagnetic Fields (Kluver-Plenum, New York, 1996).Google Scholar
  52. A. Lerchl, R. J. Reiter, K. A. Howes, K. O. Nanaka, K. A. Stokan, “Evidence that Extremely low Frequency Ca2+-Cyclotrone Resonance Fields Depress Pineal Melatonin Synthesis in vitro,” Neurosci. Lett. 124(2), 213–215 (1991).CrossRefGoogle Scholar
  53. D. H. Pfluger, Melatonin-An Indicator for Environmental and Pharmacological Effects-Studies on Exposure to Low Frequency Magnetic Fields, Smoking and Coffee Consumption (University of Bern Publ., Phil. Nat. Facultat. Bern, 1997, pp. 88–90).Google Scholar
  54. R. A. Wever, “Human Circadian Rhythms under the Influence of Weak Electric Fields and the Different Aspects of These Studies,” Int. J. Biometeorol. 17(3), 227–232 (1973).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. S. Martynyuk
    • 1
  • N. A. Temur’yants
    • 2
  1. 1.Shevchenko National UniversityKievUkraine
  2. 2.V.I. Vernadskii Taurida National UniversitySimferopol’Ukraine

Personalised recommendations