Izvestiya, Atmospheric and Oceanic Physics

, Volume 46, Issue 6, pp 668–676 | Cite as

On some achievements and major problems in mathematical modeling of climatic characteristics of the Ocean (critical analysis)

Article

Abstract

This paper is devoted to a brief critical review of major achievements and shortcomings in numerical modeling of climatic characteristics of the World Ocean. It is shown that the most interesting results are obtained due to the transition to high resolution (the horizontal grid spacing being no more than 1/18°). The need to switch to higher resolution (about 0.01°) is also obvious. The author deeply appreciates the study by Guo et al. [25] in which the role of JEBAR and other terms of the integral mass transport equation is assessed. High resolution, however, is not the only problem. A mathematical description of the physical processes of ice formation and melting and a four-dimensional analysis of the data remain a difficult problem. It is noted that in a number of studies extensive integration tends to filter out the results in a simulation of intense currents. This process of Sverdrupization of the integral mass transport is shown schematically in Fig. 2. An original scheme of the formation of the equatorial subsurface countercurrents is presented. The author suggests that neither modeling nor analyzing the resulting data show the presence of warming in the World Ocean; hence, there is no global warming in the atmosphere either.

Keywords

ocean modeling Sverdrupization of calculations JEBAR high resolution global warming 

References

  1. 1.
    I. W. Sandström and B. Helland-Hansen, “Über die Berechnung von Meeresströmungen,” Res. Norw. Mar. Inst. (1903).Google Scholar
  2. 2.
    A. S. Sarkisyan, Principles of Theory and Calculation of Oceanic Flows (Gidrometeoizdat, Leningrad, 1966) [in Russian].Google Scholar
  3. 3.
    A. S. Sarkisyan, “Drawbacks of Barotropic Models of Ocean Circulation,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 5(8), 818–836 (1969).Google Scholar
  4. 4.
    A. S. Sarkisyan, Numerical Analysis and Prediction of Sea Flows (Gidrometeoizdat, Leningrad, 1977) [in Russian].Google Scholar
  5. 5.
    H. Stommel, “The Westward Intensification of the Wind-Driven Ocean Currents,” Trans. Amer. Geophys. Union 29(2), 202–206 (1948).Google Scholar
  6. 6.
    W. H. Munk, “On the Wind-Driven Ocean Circulation,” J. Meteorol. 7(2), 79–93 (1950).Google Scholar
  7. 7.
    G. Schott, “Welkarte zur Übersicht der Meersströmungen,” Ann. Hydrogr. Marit. Meteorol. 71 (1943).Google Scholar
  8. 8.
    S. Levitus and A. S. Sarkisyan, “Ocean Dynamic Characteristics Obtained by Synthesizing Climatic Data and the WOCE Program Information,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 37(4), 534–546 (2001) [Izv., Atmos. Ocean. Phys. 37 (4), 496–507 (2001)].Google Scholar
  9. 9.
    Yu. L. Demin and A. S. Sarkisyan, “Calculation of Equatorial Currents,” J. Mar. Res. 35(2), 339–356 (1977).Google Scholar
  10. 10.
    A. S. Sarkisyan and Yu. L. Demin, A Semidiagnostic Method of Sea Currents Calculation-Large-Scale Oceanographic Experiments in the WCRP (WCRP Publ. Series, Tokyo, 1983), Vol. 2, no. 1, pp. 201–214Google Scholar
  11. 11.
    P. S. Lineikin, The Main Issues of the Dynamic Theory of the Baroclinic Layer of the Sea (Gidrometeoizdat, Leningrad, 1957) [in Russian].Google Scholar
  12. 12.
    A. S. Sarkisyan, “The Role of Purely Drift Density Advection in the Dynamics of Wave-Induced Flows of a Baroclinic Ocean,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 9, 1396–1407 (1961).Google Scholar
  13. 13.
    A. S. Sarkisyan, “Dynamics of Occurrence of Wind-Induced Flows in a Baroclinic Ocean,” Okeanologiya 2(3), 393–409 (1962).Google Scholar
  14. 14.
    K. Bryan, “A Numerical Method for the Study of the Circulation of the World Ocean,” J. Comput. Phys. 4(3), 347–376 (1969).CrossRefGoogle Scholar
  15. 15.
    K. Bryan, S. Manabe, and R. C. Pacanowski, “A Global Ocean-Atmosphere Climate Model, II: The Oceanic Circulation,” J. Comput. Phys. 5, 30–46 (1975).Google Scholar
  16. 16.
    T. Ezer and G. L. Mellor, “Diagnostic and Prognostic Calculations of the North Atlantic and Sea Level Using a Sigma Coordinate Ocean Model,” J. Geophys. Res. 99(C7), 14159–14171 (1994).CrossRefGoogle Scholar
  17. 17.
    A. S. Sarkisyan, “Forty Years of JEBAR-the Finding of the Joint Effect of Baroclinicity and Bottom Relief for the Modeling of Ocean Climatic Characteristics,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42(5), 582–603 (2006) [Izv., Atmos. Ocean. Phys. 42 (5), 534–554 (2006)].Google Scholar
  18. 18.
    A. S. Sarkisyan and J. E. Sundermann, Modelling Ocean Climate Variability (Springer, Brussels, 2009).CrossRefGoogle Scholar
  19. 19.
    J. A. Semtner and R. M. Chervin, “Ocean General Circulation from a Global Eddy-Resolving Model,” J. Geophys. Res. 97(C4), 5493–5550 (1992).CrossRefGoogle Scholar
  20. 20.
    DYNAMO Group. Dynamics of North Atlantic models: Simulation and Assimilation with High Resolution Models (Ber. Inst. F. Meereskunde Kiel., Hamburg, 1997).Google Scholar
  21. 21.
    W. L. Gates, et al., “An Intercomparison of Selected Features of the Control Climates Simulated by Coupled Ocean-Atmosphere General Circulation Model,” World Climate Programme, Res. WCRP-82, WMO/TD-No.574 (1993).Google Scholar
  22. 22.
    A. V. Shcherbakov and V. V. Malakhova, Numerical Modeling of Global Ocean Climate (Nauka, Novosibirsk, 2008) [in Russian].Google Scholar
  23. 23.
    H. Tsujino and T. Yasuda, “Formation and Circulation of Mode Waters of the North Pacific in a High-Resolution GCM,” J. Phys. Oceanogr. 34(2), 399–415 (2004).CrossRefGoogle Scholar
  24. 24.
    R. D. Smith, M. E. Maltrud, F. O. Bryan, et al., “Numerical Simulation of the North Atlantic Ocean at 1/10°,” J. Phys. Oceanogr. 30, 1532–1561 (2000).CrossRefGoogle Scholar
  25. 25.
    X. Guo, H. Hukuda, Y. Miyazawa, et al., “A Triply Nested Ocean Model for Simulating the Kuroshio-Roles of Horizontal Resolution on JEBAR,” J. Phys. Oceanogr. 33(1), 146–169 (2003).CrossRefGoogle Scholar
  26. 26.
    A. S. Sarkisyan and V. F. Ivanov, “Combined Effect of Baroclinity and Seafloor Topography as an Important Factor in Sea Flow Dynamics,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 7(2), 173–188 (1971).Google Scholar
  27. 27.
    G. I. Marchuk, A. S. Sarkisyan, and V. P. Kochergin, “Calculations of Flows in a Baroclinic Ocean: Numerical Methods and Results,” Geophys. Fluid Dyn. 5(7), 89–100.Google Scholar
  28. 28.
    G. I. Marchuk and A. S. Sarkisyan, Mathematical Modelling of Ocean Circulation (Springer, Berlin, 1988).Google Scholar
  29. 29.
    D. E. Harrison and M. Carson, “Is the Word Ocean Warming? Upper-Ocean Temperature Trends: 1950–2000,” J. Phys. Oceanogr. 37(2), 174–187 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations