Izvestiya, Atmospheric and Oceanic Physics

, Volume 46, Issue 5, pp 574–590 | Cite as

A comparative analysis of the method of extratropical cyclone identification

Article

Abstract

Three methods for identification cyclones in extratropical latitudes of the Northern Hemisphere (NH) (20°–80° L) are compared based on reanalysis data (1948–2007) for the fields of the sea level pressure (SLP). Different characteristics of extratropical cyclones, namely, their number, intensity, size, and lifetime, are analyzed. The effect of orographic effects for the identification of cyclones and their trajectories is evaluated. The characteristics of extratropical cyclones are compared based on different reanalysis data (National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR), ERA-40, and ERA-INTERIM) with different spatial resolutions.

Key words

cyclones reanalysis model climate cyclonic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon et al. (Cambridge Univ. Press, Cambridge, 2007).Google Scholar
  2. 2.
    I. I. Mokhov, O. I. Mokhov, V. K. Petukhov, et al., “Effect of Global Climate Changes on the Eddy Activity in the Atmosphere,” Izv. Akad. Nauk, Fiz. Atm. Okeana 28(1), 11–26 (1992).Google Scholar
  3. 3.
    I. I. Mokhov, O. I. Mokhov, V. K. Petukhov, et al., “On the Effect of Cloudiness on the Eddy Activity in the Atmosphere upon Climate Changes,” Meteorol. Gidrol., No. 1, 5–11 (1992).Google Scholar
  4. 4.
    I. I. Mokhov, V. M. Gryanik, T. N. Doronina, et al., Eddy Activity in the Atmosphere: Change Tendencies, Preprint no. 2 (Institut fiziki atmosfery RAN, Moscow, 1993) [in Russian].Google Scholar
  5. 5.
    S. J. Lambert, “The Effect of Enhanced Greenhouse Warming on Winter Cyclone Frequencies and Strengths,” J. Clim. 8(5), 1447–1452 (1995).CrossRefGoogle Scholar
  6. 6.
    S. J. Lambert and J. C. Fyfe, “Changes in Winter Cyclone Frequencies and Strengths Simulated in Enhanced Greenhouse Warming Experiments: Results from the Models Participating in the IPCC Diagnostic Exercise,” Clim. Dyn. 26(7–8), 713 (2006).CrossRefGoogle Scholar
  7. 7.
    X. L. Wang, V. R. Swail, and F. W. Zwiers, “Climatology and Changes of Extratropical Cyclone Activity: Comparison of ERA-40 with NCEP-NCAR Reanalysis for 1958–2001,” J. Clim. 19(13), 3145–3166 (2006).CrossRefGoogle Scholar
  8. 8.
    I. F. Trigo, “Climatology and Interannual Variability of Storm Tracks in the Euro-Atlantic Sector: A Comparison between ERA-40 and NCEP/NCAR Reanalyses,” Clim. Dyn. 26(2–3), 127–143 (2006).CrossRefGoogle Scholar
  9. 9.
    M. Yu. Bardin, “The Main Modes of Variability in Repeatability of Cyclones in Winter in the Atlantic Sector,” Meteorol. Gidrol., No. 1, 42–52 (2000).Google Scholar
  10. 10.
    M. Yu. Bardin and A. B. Polonskii, “North Atlantic Oscillation and Synoptic Variability in the European Atlantic Region in Winter,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 147–157 (2005) [Izv., Atmos. Ocean. Phys. 41, 127–136 (2005)].Google Scholar
  11. 11.
    M. G. Akperov, M. Yu. Bardin, E. M. Volodin, et al., “Probability Distributions for Cyclones and Anticyclones from the NCEP/NCAR Reanalysis Data and the INM RAS Climate Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43(6), 764–772 (2007) [Izv., Atmos. Ocean. Phys. 43 (6), 705–712 (2007)].Google Scholar
  12. 12.
    G. S. Golitsyn, I. I. Mokhov, M. G. Akperov, et al., “Assessments of Hydrometeorological Risks and Distribution Functions of the Probability of Atmospheric Eddies according to Reanalysis and Climate Simulation Data,” Probl. Analiza Riska 4(1), 27–37 (2007).Google Scholar
  13. 13.
    S. K. Gulev, O. Zolina, and S. Grigoriev, “Extratropical Cyclone Variability in the Northern Hemisphere Winter from the NCEP/NCAR Reanalysis Data,” Clim. Dyn. 17(10), 795–809 (2001).CrossRefGoogle Scholar
  14. 14.
    M. C. Serreze, “Climatological Aspects of Cyclone Development and Decay in the Arctic,” Atmos.-Ocean 33(1), 1–23 (1995).Google Scholar
  15. 15.
    M. C. Serreze, F. Carse, R. G. Barry, et al., “Icelandic Low Cyclone Activity: Climatological Features, Linkages with the NAO and Relationships with Recent Changes in the Northern Hemisphere Circulation,” J. Clim. 10(3), 453–464 (1997).CrossRefGoogle Scholar
  16. 16.
    R. J. Murray and I. Simmonds, “A Numerical Scheme for Tracking Cyclone Centres from Digital Data. Part I: Development and Operation of the Scheme,” Austr. Meteorol. Mag. 39(3), 155–166 (1991).Google Scholar
  17. 17.
    M. R. Sinclair, “An Objective Cyclone Climatology for the Southern Hemisphere,” Mon. Wea. Rev. 122(10), 2239–2256 (1994).CrossRefGoogle Scholar
  18. 18.
    M. R. Sinclair and I. G. Watterson, “Objective Assessment of Extratropical Weather Systems in Simulated Climate,” J. Clim. 12(12), 3467–3485 (1999).CrossRefGoogle Scholar
  19. 19.
    R. Blender, K. Fraedrick, and F. Lunkeit, “Identification of Cyclone Track Regimes in the North Atlantic,” Q. J. R. Meteorol. Soc. 123(539), 727–741 (1997).CrossRefGoogle Scholar
  20. 20.
    V. E. Lagun and A. I. Yazev, “Global Distribution and Temporal Variability of Parameters of Cyclonic Disturbances in the Atmosphere,” Dokl. Akad. Nauk 334(5), 642–645 (1994).Google Scholar
  21. 21.
    C. C. Raible, P. Della-Marta, C. Schwierz, et al., “Northern Hemisphere Extratropical Cyclones: A Comparison of Detection and Tracking Methods and Different Reanalyses,” Mon. Wea. Rev. 136(3), 880–897 (2008).CrossRefGoogle Scholar
  22. 22.
    E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Am. Meteorol. Soc. 77(3), 437–471 (1996).CrossRefGoogle Scholar
  23. 23.
    R. Kistler, E. Kalnay, W. Collins, et al., “The NCEP 50-Year Reanalysis: Monthly Means CD-ROM and Documentation,” Bull. Am. Meteorol. Soc. 82(2), 247–267 (2001).CrossRefGoogle Scholar
  24. 24.
    D. F. Parrish and J. D. Derber, “The National Meteorological Center Spectral Statistical Interpolation Analysis System,” Mon. Wea. Rev. 120(8), 1747–176 (1992).CrossRefGoogle Scholar
  25. 25.
    S. M. Uppala, P. W. Kallberg, A. J. Simmons, et al., “The ERA-40 Re-Analysis,” Q. J. R. Meteorol. Soc. 131(612), 2961–3012 (2005).CrossRefGoogle Scholar
  26. 26.
    P. Courtier, E. Andersson, W. Heckley, et al., “The ECMWF Implementation of Three Dimensional Variational Assimilation 3D-Var. Pt I: Formulation,” Q. J. R. Meteorol. Soc. 124(550) 1783–1808 (1998).Google Scholar
  27. 27.
    Ed. by B. Riddaway, No. 110 (2007).Google Scholar
  28. 28.
    M. Tsukernik, D. N. Kindig, and M. C. Serreze, “Characteristics of Winter Cyclone Activity in the Northern North Atlantic: Insights from Observations and Regional Modeling,” J. Geophys. Res. 112(D3), doi: 10.1029/2006JD007184, D03101 (2007).CrossRefGoogle Scholar
  29. 29.
    J. G. Pinto, U. Ulbrich, G. C. Leckebusch, et al., “Changes in Storm Track and Cyclone Activity in Three SRES Ensemble Experiments with the ECHAM5/MPI-OM1 GCM,” Clim. Dyn. 29(2–3), 195–210 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations