Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 46, Issue 4, pp 414–431 | Cite as

Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations

  • E. M. VolodinEmail author
  • N. A. Dianskii
  • A. V. Gusev
Article

Abstract

The INMCM3.0 climate model has formed the basis for the development of a new climate-model version: the INMCM4.0. It differs from the previous version in that there is an increase in its spatial resolution and some changes in the formulation of coupled atmosphere-ocean general circulation models. A numerical experiment was conducted on the basis of this new version to simulate the present-day climate. The model data were compared with observational data and the INMCM3.0 model data. It is shown that the new model adequately reproduces the most significant features of the observed atmospheric and oceanic climate. This new model is ready to participate in the Coupled Model Intercomparison Project Phase 5 (CMIP5), the results of which are to be used in preparing the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC).

Key words

model atmosphere ocean climate El Niño Arctic Oscillation sea ice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “IPCC Third Assessment Report,” in Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, Y. Ding, D. J. Gridds, et al. (Cambridge University Press, Cambridge, 2001).Google Scholar
  2. 2.
    IPCC Fourth Assessment Report in “Intergovernmental Panel on Climate Change”, Ed. by S. D. Solomon, D. Qin, M. Manning, et al. (Cambridge University Press, Cambridge, 2007).Google Scholar
  3. 3.
    WMO: World Meteorological Organization. The Physical Basis of Climate and Climate Modelling, GARP Publications, Ser. 16 (WMO, Geneva, 1975; Gidrometeoizdat, Leningrad, 1977).Google Scholar
  4. 4.
    V. P. Dymnikov and A. N. Filatov, Bases of Mathematical Climate Theory (VINITI, Moscow, 1994) [in Russian].Google Scholar
  5. 5.
    S. Manab and K. Bryan, “Climate and the Ocean Circulation,” Mon. Wea. Rev. 97, 739–827 (1969).CrossRefGoogle Scholar
  6. 6.
    G. I. Marchuk, V. P. Dymnikov, V. N. Lykosov, et al., Hydrodynamic Model of General Circulation of the Atmosphere and Ocean (Methods of Realization) (VTs SOAN SSSR, Novosibirsk, 1975) [in Russian].Google Scholar
  7. 7.
    G. I. Marchuk, V. P. Dymnikov, V. B. Zalesnyi, et al., Mathematical Modeling of General Circulation of the Atmosphere and Ocean (Gidrometeoizdat, Leningrad, 1984) [in Russian].Google Scholar
  8. 8.
    C. Covey, “AchutaRao K.M., Lambert S.J., et al., Intercomparison of Present and Future Climates Simulated by Coupled Ocean-Atmosphere GCMs,” PCMDI Report, No. 66, 1–20 (2000).Google Scholar
  9. 9.
    V. P. Meleshko, V. M. Kattsov, P. V. Sporyshev, et al., “Study of Possible Climate Changes using Models of General Circulation of the Atmosphere and Ocean,” in Climate Changes and Their Consequences. Proc. Special Session of Academic Council of the Center of International Cooperation on Environmental Problems Dedicated to the 80s Anniversary of Academician M.I. Budyko (May 19–20, 1999) (Nauka, St. Petersburg, 2002), pp. 13–35 [in Russian].Google Scholar
  10. 10.
    I. I. Mokhov, P. F. Demchenko, A. V. Eliseev, et al., “Estimation of Global and Regional Climate Changes during the 19th–21st Centuries on the Basis of the IAP RAS Model with Consideration for Anthropogenic Forcing,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38(5), 629–642 (2002) [Izv., Atmos. Ocean. Phys. 38 (5), 555–564 (2002)].Google Scholar
  11. 11.
    M. Claussen, A. Mysak, A. J. Weaver, et al., “Earth System Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System Models,” Climate Dynamics 18(7), 579–586 (2002).CrossRefGoogle Scholar
  12. 12.
    K. E. Muryshev, A. V. Eliseev, I. I. Mokhov, et al., “Validating and Assessing the Sensitivity of the Climate Model with an Ocean General Circulation Model Developed at the Institute of Atmospheric Physics, Russian Academy of Sciences,” Izv. Akad. Nauk, Fiz. Atm. Okeana 45(4), 448–466 (2009) [Izv., Atmos. Ocean. Phys. 45 (4), 416–433 (2009)].Google Scholar
  13. 13.
    E. M. Volodin and N. A. Diansky, “imulation of Climate Changes in the 20th–22nd Centuries with a Coupled Atmosphere-Ocean General Circulation Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42(3), 291–306 (2006) [Izv., Atmos. Ocean. Phys. 42 (3), 267–281 (2006)].Google Scholar
  14. 14.
    N. A. Diansky and E. M. Volodin, “Simulation of Present-Day Climate with a Coupled Atmosphere-Ocean General Circulation Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38(6), 824–840 (2002) [Izv., Atmos. Ocean. Phys. 38 (6), 732-747 (2002)].Google Scholar
  15. 15.
    D. A. Randall, R. A. Wood, S. Bony, et al., “Climate Models and Their Evaluation,” in Climate Change 2007. The Physical Science Basis (Cambridge University Press, Cambridge, 2007), pp. 589–662.Google Scholar
  16. 16.
    V. A. Alekseev, E. M. Volodin, V. Ya. Galin, et al., “Modern Climate Simulation using the Atmosphere Model Developed at IVM RAN,” Preprint No. I, IVM RAN (1998).Google Scholar
  17. 17.
    V. Ya. Galin, E. M. Volodin, and S. P. Smyshlyaev, “Model of General Atmosphere Circulation Developed at IVM RAN with Ozone Dynamics,” Meteorol. Gidrol., No. 5, 13–23 (2003).Google Scholar
  18. 18.
    V. Ya. Galin, “Parametrization of Radiative Processes in the DNM Atmospheric Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34(3), 380–389 (1998) [Izv., Atmos. Ocean. Phys., 34 (3), 339–347 (1998)].Google Scholar
  19. 19.
    A. K. Betts, “A New Convective Adjustment Scheme. Pt 1. Observational and Theoretical Basis,” Quart. J. R. Meteorol. Soc. 112, 677–691 (1986).Google Scholar
  20. 20.
    T. N. Palmer, G. J. Shutts, and R. Swinbank, “Alleviation of a Systematic Westerly Bias in General Circulation and Numerical Weather Prediction Models through an Orographic Gravity Wave Drag Parameterization,” Quart. J. R. Meteorol. Soc. 112, 1001–1031 (1986).CrossRefGoogle Scholar
  21. 21.
    C. O. Hines, “Doppler Spread Parameterization of Gravity Wave Momentum Deposition in the Middle Atmosphere. 2. Broad and Quasimonochromatic Spectra, and Implementation,” J. Atm. Sol. Terr. Phys. 59(4), 387–400 (1997).CrossRefGoogle Scholar
  22. 22.
    E. M. Volodin and V. N. Lykosov, “Parametrization of Heat and Moisture Transfer in the Soil-Vegetation System for Use in Atmospheric General Circulation Models: 1. Formulation and Simulations Based on Local Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34(4), 453–465 (1998) [Izv., Atmos. Ocean. Phys., 34 (4), 405–416 (1998)].Google Scholar
  23. 23.
    A. V. Gusev, Candidate’s Dissertation in Mathematical Physics (IVM RAN, Moscow, 2009).Google Scholar
  24. 24.
    G. I. Marchuk, Methods of Numerical Mathematics, 2nd ed. (Nauka, Moscow, 1980; Springer, New York, 1975).Google Scholar
  25. 25.
    S. M. Griffies, “Some Ocean Models Fundamentals” in Ocean Weather Forecasting: an Integrated View of Oceanography, Ed. by E. P. Chassignet and J. Verron (Springer, Berlin, 2005), pp. 19–74.Google Scholar
  26. 26.
    N. G. Yakovlev, “Coupled Model of Ocean General Circulation and Sea Ice Evolution in the Arctic Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39(3), 394–409 (2003) [Izv., Atmos. Ocean. Phys., 39 (3), 355–568 (2003)].Google Scholar
  27. 27.
    E. C. Hunke and J. K. Dukowicz, “An Elastic-Viscous-Plastic Model for Sea Ice Dynamics,” J. Phys. Oceanogr. 27(9), 1849–1867 (1997).CrossRefGoogle Scholar
  28. 28.
    E. M. Volodin, “Model’ obshchei tsirkulyatsii atmosfery i okeana s uglerodnym tsiklom,” Izv. RAN Fizika Atmosfery i Okeana 43(3), 298–313 (2007).Google Scholar
  29. 29.
    E. M. Volodin, “Methane Cycle in the INM RAS Climate Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 44(2), 163–170 (2008) [Izv., Atmos. Ocean. Phys., 44 (2), 153–159 (2008)].Google Scholar
  30. 30.
    M. Steele, R. Morley, and W. Ermold, “PHC: A Global Ocean Hydrography with a High Quality Arctic Ocean,” J. Clim. 14, 2079–2087 (2001).CrossRefGoogle Scholar
  31. 31.
    E. Kalnay and M. Kanamitsu, et al., “The NCEP/NCAR 40 Year Reanalysis Project,” Bull. Am. Met. Soc. 77(3), 437–471 (1996).CrossRefGoogle Scholar
  32. 32.
    B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, et al., “Clouds and Thr Earth Radiant Energy System (CERES): An Earth Observing System Experiment,” Bull. Amer. Meteor. Soc. 77(5), 853–868 (1996).CrossRefGoogle Scholar
  33. 33.
    Y. C. Zhang, W. B. Rossow, A. A. Lacis, et al., “Calculation of Radiative Fluxes from the Surface to Top of Atmosphere Based on Isccp and Other Global Data Sets: Refinements of the Radiative Transfer Model and Input Data,” J. Geophys. Res. 109(D19) D19105, doi: 10.1029/2003JD004457 (2004).CrossRefGoogle Scholar
  34. 34.
    S. M. Uppala, and coauthors, “The ERA-40 Reanalysis,” Quart. J. Roy. Meteor. Soc. 131(610), 2961–3012 (2005).CrossRefGoogle Scholar
  35. 35.
    W. B. Rossow and E. Duenas, “The International Satellite Cloud Climatology Project (ISCCP) Web Site: An Online Resource for Research,” Bull. Amer. Meteor. Soc. 85(2), 167–172 (2004).CrossRefGoogle Scholar
  36. 36.
    P. Xie and P. A. Arkin, “Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs,” Bull. Amer. Met. Soc. 78(11), 2539–2558 (1997).CrossRefGoogle Scholar
  37. 37.
    K. E. Trenberth, L. Smith, T. Qian, et al., “Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data,” J. Hydrometeor. 8(4), 758–769 (2007).CrossRefGoogle Scholar
  38. 38.
    D. A. Robinson, K. F. Dewey, and R. R. Heim, “Global Snow Cover Monitoring: an Update,” Bull. Amer. Met. Soc. 74(9), 1689–1696 (1993).CrossRefGoogle Scholar
  39. 39.
    T. Zhang, R. G. Barry, K. Knowles, et al., “Statistics and Characteristics of Permafrost and Ground-Ice Distribution in the Northern Hemisphere,” Polar Geogr. 23(2), 132–154 (1999).CrossRefGoogle Scholar
  40. 40.
    T. Zhang, R. G. Barry, K. Knowles, et al., “Distribution of Seasonally and Perennially Frozen Ground in the Northern Hemisphere,” in Permafrost: Proc. of Eighth Intern. Conf. Permafrost, Ed. by M. Phillips, S. M. Springman, and L. U. Arenson (2003), pp. 1284–1289.Google Scholar
  41. 41.
    N. A. Rayner, D. E. Parker, E. B. Horton, et al., “Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature Since the Late Nineteenth Century,” J. Geophys. Res. 108(D14), 4407, doi: 10.1029/2002JD002670 (2003).CrossRefGoogle Scholar
  42. 42.
    P. S. Willem, M. Bates, and M. H. England, Can Isopycnal Mixing Control the Stability of the Thermohaline Circulation in Ocean Climate Models? J. Climate. 19(22), 5637–5651 (2006).Google Scholar
  43. 43.
    J. W. Hurrell, J. J. Hack, D. Shea, et al., “A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model,” J. Clim. 21(19), 5145–5153 (2008).CrossRefGoogle Scholar
  44. 44.
    G. A. Meehl, T. F. Stocker, W. D. Collins, et al., “Global Climate Projections,” in Climate Change 2007. The Physical Science Basis (Cambridge University Press, Cambridge, 2007), pp. 748–845.Google Scholar
  45. 45.
    K. E. Trenbeth and J. M. Caron, “Estimates of Meridional Atmosphere and Ocean Heat Transports,” J. Climate 14(16), 3433–3443 (2001).CrossRefGoogle Scholar
  46. 46.
    E. M. Volodin and N. A. Diansky, “Reproduction of the El-Niño Phenomenon in a Coupled Ocean-Atmosphere General Circulation Model,” Meteorol. Gidrol., No. 12, 5–14 (2004).Google Scholar
  47. 47.
    D. W. J. Thompson and J. M. Wallace, “The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields,” Geophys. Res. Lett. 25(9), 1297–1300 (1998).CrossRefGoogle Scholar
  48. 48.
    J. M. Wallace and D. S. Gutzler, “Teleconnections in the Geopotential Height Field During the Northern Hemisphere,” Mon. Wea. Rev. 109 784–812 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations