Izvestiya, Atmospheric and Oceanic Physics

, Volume 45, Issue 4, pp 456–466

Variations in the atmospheric aerosol optical depth from the data obtained at the Russian actinometric network in 1976–2006

  • I. N. Plakhina
  • N. V. Pankratova
  • E. L. Makhotkina
Article

Abstract

The results of an analysis of variations in the optical depth of a vertical atmospheric column on the basis of a 30-year (1976–2006) series of observations obtained by the Russian actinometric network are generalized. This analysis is based on the Atmosphere Transparency special-purpose database created at the Voeikov Main Geophysical Observatory on the basis of observational data obtained at the actinometric stations of the Russian Hydrometeorological Research Center. The general regularities of spatial variations in the atmospheric optical depth (AOD) over Russia are revealed: there is a monotonic decrease from the southwest to the northeast, with localized areas having different aerosol loads due to the global and regional factors of their formation. A spatiotemporal structure of the anomalies of AOD annual values within the time interval under consideration, including the El Chichon (1982) and Pinatubo (1991) eruptions, is studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IPCC, Climate Change 2001. Working Group I, Contribution to the Intergovernmental Panel on Climate Change. 3rd Assessment Report Climate Change 2001: the Physical Sciense Basis (Cambridge Univ., UK, New York, 2001); http://www.grida.no/climate/ipcc_tar/wg1/166.html.Google Scholar
  2. 2.
    IPCC, Climate Change 2007. Working Group I, Contribution to the Intergovernmental Panel on Climate Change. 4th Assessment Report of Climate Change: The Physical Science Basis (Cambridge Univ., UK, New York, 2001), Ch. 2, pp. 130–234.Google Scholar
  3. 3.
    Effects of Warming in Arctic (Cambridge Univ., Edinburg, 2004), p. 140.Google Scholar
  4. 4.
    A. A. Isaev, Ecological Climatology (Nauchn. Mir, Moscow, 2001) [in Russian].Google Scholar
  5. 5.
    WCRP (World Climate Research Programme), http://www.wmo.ch/pages/prog/wcrp/pdf/pdf/bsrn8rpt.pdf.
  6. 6.
  7. 7.
    B. N. Holben, T. F. Eck, I. Slutsker, et al., “AERONET: a Federated Instrument Network and Data Archive for Aerosol Characterization,” Rem. Sens. Envir. 66, 1–16 (1998).CrossRefGoogle Scholar
  8. 8.
    A. Smirnov, V. N. Holben, M. V. Ranshenko, et al., “Aerosol Robotic Network Activity in Russia, Moldova, Estonia, Belarus, and Ukraine as an Example of the Mutually Beneficial Collaborative Effort Results and Prospective,” in Proc. of the Intern. Symp. of SNG Countries on Atmospheric Radiation MSAR-2006 (St.-Petersb. Gos. Univ., St.-Petersburg, 2006), pp. 9–10.Google Scholar
  9. 9.
    I. N. Plakhina, E. L. Makhotkina, and N. V. Pankratova, “Variation of Atmosphere Aerosol Optical Thickness in Russia Territory in Last 30 Years: Season Changes and Multiyears Trens,” Meteorol. Gidrol., No. 2, 19–29 (2007).Google Scholar
  10. 10.
    I. N. Plakhina and E. L. Makhotkina, “Analysis of Time Changes of Atmosphere Transparency by Data of Actinometric Network,” in Proc. of the Intern. Symp. on Atmosphere Physics, Science and Education (St.-Petersb. Gos. Univ., St.-Petersburg, 2007), pp. 65–68 [in Russian].Google Scholar
  11. 11.
    L. V. Luts’ko, E. L. Makhotkina, and V. A. Klevantsova, “Development of Surface Actinometric Measurements,” in Modern Studies of Main Geophysical Observatory, Anniversary Collected Volume (Gidrometeoizdat, St. Petersburg, 2001), pp. 184–202 [in Russian].Google Scholar
  12. 12.
    E. L. Makhotkina, A. B. Lukin, and I. N. Plakhina, “Monitoring of Integral Atmosphere Transparency,” in Proc. of the All-Russ. Conf. on Development of Monitoring System of Atmosphere Structure (RSMSA) (Maks Press, Moscow, 2007), p. 104.Google Scholar
  13. 13.
    T. A. Tarasova and E. V. Yarkho, “Determination of Atmosphere Aerosol Optical Thickness by Measurements of Direct Integral Radiation,” Meteorol. Gidrol., No. 12, 66–71 (1991).Google Scholar
  14. 14.
    E. V. Yarkho, “Time Variability of Atmosphere Aerosol Optical Thickness in Different Climate Zones,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 30, 417–424 (1994).Google Scholar
  15. 15.
    G. M. Abakumova, E. V. Gorbarenko, and N. E. Chubarova, “Estimation of Determination Accuracy of Atmosphere Aerosol Optical Thickness and Moisture Content by Data of Standart Observations on the Base of Comparison with Measurements by Solar Photometer SIMEL,” in Proc. of the Intern. Symp. of SNG Countries on Atmospheric Radiation MSAR-2006, 27–30 June 2006 (St.-Petersb. Gos. Univ., St.-Petersburg, 2006), pp. 43–44.Google Scholar
  16. 16.
    V. F. Rodionov, M. S. Marshunova, E. N. Rusina, et al., “Aerosol Turbidity of Atmosphere in Polar Regions,” Izv. RAN, Fiz. Atmos. Okeana 30, 797–801 (1994).Google Scholar
  17. 17.
    E. N. Rusina and V. F. Rodionov, “Estimation of Preindustrial Atmosphere Optical Thickness in Arctic in Modern Contribution of Antropogeneous Discharges,” Meteorol. Gidrol., No. 5, 35–39 (2002).Google Scholar
  18. 18.
    G. M. Abakumova, “Tendency of Multiyears Changes of Atmosphere Transparency, Cloud Amount, Solar Radiation and Albedo of Covering Surface in Moscow,” Meteorol. Gidrol., No. 9, 51–62 (2000).Google Scholar
  19. 19.
    E. V. Gorbarenko, “Aerosol Component of Atmosphere Optical Thickness like Feature of Antropogeneous Pollution above Industrial Centers,” Meteorol. Gidrol., No. 3, 12–18 (1997).Google Scholar
  20. 20.
    A. E. Erokhina, A. B. Lukin, and E. V. Gorbarenko, “Some Tendencies of Changes of Atmosphere Aerosol Optical Turbidity in Russia,” in Proc. of the MSAR-2004 (St.-Petersb. Gos. Univ., St.-Petersburg, 2004), pp. 61–62.Google Scholar
  21. 21.
    G. M. Abakumova, E. M. Feigelson, V. Russak, et al., “Evaluation of Long-Term Changes in Radiation Cloudness and Surface Temperature on the Territory of the Former Soviet Union,” J. Clim. 9, 1319–1327 (1996).CrossRefGoogle Scholar
  22. 22.
    KVERT (Kamshatkan Volcanic Eruption Response Team), http://www.kscnet.ru/ivs/kvert/volcanoes/index.html.
  23. 23.
    IPCC. Climate Change 2007. Working Group I, Contribution to the Intergovernmental Panel on Climate Change. 4th Assessment Report of Climate Change: The Physical Science Basis, Changes in Atmospheric Constituents and in Radiative Forcing (Cambridge Univ., UK, New York, 2001), Ch. 9.Google Scholar
  24. 24.
    D. Hofmann, J. Barnes, E. Dutton, et al., “Surface-Based Observations of Volcanic Emissions to the Stratosphere,” in Volcanism and the Earths Atmosphere, Geophys. Monogr. 139, Ed. by A. Robock and C. Oppenheimer (AGU, Washington, DC, 2003), pp. 57–73.Google Scholar
  25. 25.
    R. Stothers, “A Chronology of Annual Mean Radii of Stratospheric Aerosol from Volcanic Eruptions During the Twentieth Century as Derived from Ground-Based Spectral Extinction Measurements,” J. Geophys. Res. 106(D23), 32043–32049 (2001).CrossRefGoogle Scholar
  26. 26.
    R. Stothers, “Major Optical Depth Perturbations to the Stratosphere from Volcanic Eruptions: Stellar Extinction Period, 1961–1978,” J. Geophys. Res. 106(D3), 2993–3003 (2001).CrossRefGoogle Scholar
  27. 27.
    L. Thomason and T. Peter, “Assessment of Stratospheric Aerosol Properties,” in Report on the Assessment Kick-Off Workshop (France, Paris, 2001), SPARC Report No. 4, WCRP-124, WMO.2006, http://www.aero.jussieu.fr.
  28. 28.
    M. Sato, J. E. Hansen, M. P. McCormick, et al., “Stratospheric Aerosol Optical Depths, 1850–1990,” J. Geophys. Res. 98(D12), 22987–22994 (1993).CrossRefGoogle Scholar
  29. 29.
    G. L. Stenchikov, I. Kirchner, A. Robock, et al., “Radioactive Forcing from the 1991 Mount Pinatubo Volcanic Eruption,” J. Geophys. Res. 103(D12), 13837–13857 (1998).CrossRefGoogle Scholar
  30. 30.
    J. Hansen, M. Sato, L. Nazarenko, et al., “Climate Forcings in Goddard Institute for Space Studies SI2000 Simulations,” J. Geophys. Res. 107(D18), 4347 (2002).CrossRefGoogle Scholar
  31. 31.
    C. M. Ammann, G. A. Meehl, W. M. Washington, et al., “Amonthly and Latitudinally Varying Volcanic Forcing Dataset in Simulations of 20th Century Climate,” Geophys. Rev. Lett. 30(12), 1657 (2003).CrossRefGoogle Scholar
  32. 32.
    G. Stenchikov, K. Hamilton, R. J. Stouffer, et al., “Arctic Oscillation Response To Volcanic Eruptions in the IPCC AR4 Climate Models,” J. Geophys. Res. 111, D07107 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. N. Plakhina
    • 1
  • N. V. Pankratova
    • 1
  • E. L. Makhotkina
    • 2
  1. 1.A.M. Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Voeikov Main Geophysical ObservatorySt. PetersburgRussia

Personalised recommendations