Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 45, Issue 4, pp 416–433 | Cite as

Validating and assessing the sensitivity of the climate model with an ocean general circulation model developed at the Institute of Atmospheric Physics, Russian Academy of Sciences

  • K. E. Muryshev
  • A. V. EliseevEmail author
  • I. I. Mokhov
  • N. A. Diansky
Article

Abstract

A new version of the Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS), climate model (CM) has been developed using an ocean general circulation model instead of the statistical-dynamical ocean model applied in the previous version. The spatial resolution of the new ocean model is 3° in latitude and 5° in longitude, with 25 unevenly spaced vertical levels. In the previous version of the oceanic model, as in the atmospheric model, the horizontal resolution was 4.5° in latitude and 6° in longitude, with four vertical levels (the upper quasi-homogeneous layer, seasonal thermocline, abyssal ocean, and bottom friction layer). There is no correction for the heat and momentum fluxes between the atmosphere and ocean in the new version of the IAP RAS CM. Numerical experiments with the IAP RAS CM have been performed under current initial and boundary conditions, as well as with an increasing concentration of atmospheric carbon dioxide. The main simulated atmospheric and oceanic fields agree quite well with observational data. The new version’s equilibrium temperature sensitivity to atmospheric CO2 doubling was found to be 2.9 K. This value lies in the mid-range of estimates (2–4.5 K) obtained from simulations with state-of-the-art models of different complexities.

Keywords

Oceanic Physic Ocean General Circulation Model Antarctic Circumpolar Current Western Boundary Current Meridional Heat Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Climate Change 2007: the Scientific Basis, Ed. by S. Solomon, D. Qin, M. Manning, et al. (Cambridge Univ., Cambridge, New York, 2007), p. 996.Google Scholar
  2. 2.
    M. Claussen, L. A. Mysak, A. J. Weaver, et al., “Earth System Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System Models,” Clim. Dyn. 18, 579–586 (2002).CrossRefGoogle Scholar
  3. 3.
    V. Petoukhov, M. Claussen, A. Berger, et al., “EMIC Intercomparison Project (EMIP-CO2): Comparative Analysis of EMIC Simulations of Current Climate and Equilibrium and Transient Reponses to Atmospheric CO2 Doubling,” Clim. Dyn. 25, 363–385 (2005).CrossRefGoogle Scholar
  4. 4.
    V. K. Petoukhov, I. I. Mokhov, A. V. Eliseev, and V. A. Semenov, The IAP RAS Global Climate Model (Dialogue-MSU, Moscow, 1998).Google Scholar
  5. 5.
    D. Handorf, V. K. Petoukhov, K. Dethloff, et al., “Decadal Climate Variability in a Coupled Atmosphere-Ocean Climate Model of Moderate Complexity,” J. Geophys. Res. 104(D22), 27253–27275 (1999).CrossRefGoogle Scholar
  6. 6.
    I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, et al., “Climate chacges and their assessment based on the IAP RAS global model simulations,” Dokl. Akad. Nauk 402, 243–247 (2005) [Doklady Earth Sci. 402, 591 (2005)].Google Scholar
  7. 7.
    N. A. Dianskii and E. M. Volodin, “Simulation of Present-Day Climate with a Coupled Atmosphere-Ocean General Circulation Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38, 824–840 (2002) [Izv., Acad. Sci., Atmos. Oceanic Phys. 38, 732 (2002)].Google Scholar
  8. 8.
    E. M. Volodin and N. A. Dianskii, “Response of a Coupled Atmosphere-Ocean General Circulation Model to Increased Carbon Dioxide,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 193–210 (2003) [Izv., Acad. Sci., Atmos. Oceanic Phys. 39, 170 (2003)].Google Scholar
  9. 9.
    E. M. Volodin and N. A. Dianskii, “Simulation of Climate Changes in the 20th–22nd Centuries with a Coupled Atmosphere-Ocean General Circulation Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 291–306 (2006) [Izv., Acad. Sci., Atmos. Oceanic Phys. 42, 267 (2006)].Google Scholar
  10. 10.
    N. A. Dianskii, A. V. Bagno, and V. B. Zalesnyi, “Sigma Model of Global Ocean Circulation and Its Sensitivity to Variations in Wind Stress,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38, 537–556 (2002) [Izv., Acad. Sci., Atmos. Oceanic Phys. 38, 477 (2002)].Google Scholar
  11. 11.
    R. C. Pacanowski and S. G. H. Philander, “Parametrization of Vertical Mixing in Numerical Models of the Tropical Ocean,” J. Phys. Oceanogr. 11, 1442–1451 (1981).CrossRefGoogle Scholar
  12. 12.
    D. Bryden, S. San, and R. Bleck, “A New Approximation of the Equation of State for Seawater, Suitable for Numerical Ocean Models,” J. Geophys. Res. 104(C1), 1537–1540 (1999).CrossRefGoogle Scholar
  13. 13.
    N. A. Dianskii, “Simulations of Ocean Circulation and Study of its Reaction on Short- and Long-Period Atmospheric Actions,” Doctoral Dissertation in Mathematical Physics (IVM RAN, Moscow, 2007).Google Scholar
  14. 14.
    S. Levitus and T. P. Boyer, World Ocean Atlas 1994. Vol. 4: Temperature, NOAA Atlas NESDIS 1 (US Department of Commerce, Washington, DC, 1994)Google Scholar
  15. 15.
    S. Levitus, R. Burgett, and T. P. Boyer, World Ocean Atlas 1994. Vol. 3: Salinity, NOAA Atlas NESDIS 3 (US Department of Commerce, Washington, DC, 1994).Google Scholar
  16. 16.
    T. C. Johns, C. F. Durman, H. T. Banks, et al., “The New Hadley Centre Climate Model (HadGEM1): Evaluation of Coupled Simulations,” J. Clim. 9, 1327–1353 (2006).CrossRefGoogle Scholar
  17. 17.
    T. L. Delworth, A. J. Broccoli, A. Rosati, et al., “GFDL’s CM2 Global Coupled Climate Models. Pt. I: Formulation and Simulation Characteristics,” J. Clim. 19, 643–674 (2006).CrossRefGoogle Scholar
  18. 18.
    W. D. Collins, C. M. Bitz, M. L. Blackmon, et al., “The Community Climate System Model Version 3 (CCSM3),” J. Clim. 19, 2122–2143 (2006).CrossRefGoogle Scholar
  19. 19.
    W. G. Large, G. Danabasoglu, S. C. Doney, and J. C. McWilliams, “Sensitivity To Surface Forcing and Boundary Layer Mixing in a Global Ocean Model: Annual-Mean Climatology,” J. Phys. Oceanogr. 27, 2418–2447 (1997).CrossRefGoogle Scholar
  20. 20.
    P. R. Gent, F. O. Bryan, G. Danabasoglu, et al., “The NCAR Climate System Model Global Ocean Component,” J. Clim. 11, 1287–1306 (1998).CrossRefGoogle Scholar
  21. 21.
    A. S. Sarkisyan, V. B. Zalesnyi, N. A. Dianskii, et al., “Mathematical Models of Circulation of Oceans and Seas,” Sovrem. Probl. Vych. Matem. Matem. Model. 2, 174–276 (2005).Google Scholar
  22. 22.
    A. M. Macdonald and C. Wunsh, “An Estimate of Global Ocean Circulation and Heat Fluxes,” Nature 382, 436–439 (1996).CrossRefGoogle Scholar
  23. 23.
    M. M. Hall and H. L. Bryden, “Direct Estimates and Mechanisms of Ocean Heat Transport,” Deep-Sea Res. 29, 339–359 (1982).CrossRefGoogle Scholar
  24. 24.
    P. Brohan, J. J. Kennedy, I. Harris, et al., “Uncertainty Estimates in Regional and Global Observed Temperature Changes: a New Data Set from 1850,” J. Geophys. Res. 111(D12), D12106 (2006).CrossRefGoogle Scholar
  25. 25.
    M. I. Budyko, “Thermal Balance of Earth,” in Climate Measurements, Ed. by J. Gribbin (Gidrometeoizdat, Leningrad, 1980) [in Russian].Google Scholar
  26. 26.
    D. R. Legates and C. J. Willmott, “Mean Seasonal and Spatial Variability in Gauge-Corrected, Global Precipitation,” Int. J. Climatol. 10, 111–127 (1990).CrossRefGoogle Scholar
  27. 27.
    R. W. Spencer, “Global Oceanic Precipitation from the MSU During 1979-1991 and Comparisons to Other Climatologies,” J. Clim. 6, 1301–1326 (1993).CrossRefGoogle Scholar
  28. 28.
    I. I. Mokhov, Diagnostics of the Structure of the Climatic System (Gidrometeoizdat, St. Petersburg, 1993) [in Russian].Google Scholar
  29. 29.
    P. Xie and P. Arkin, “Global Precipitation: a 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs,” Bull. Am. Meteorol. Soc. 78, 2539–2558 (1997).CrossRefGoogle Scholar
  30. 30.
    S. P. Khromov and M. A. Petrosyants, Meteorology and Climatology (Mosk. Gos. Univ., Moscow, 2001) [in Russian].Google Scholar
  31. 31.
    S. M. Uppala, P. W. Kallberg, A. J. Simmos, et al., “The ERA-40 Re-Analysis,” Quart. J. R. Meteorol. Soc 131, 2961–3012 (2005).CrossRefGoogle Scholar
  32. 32.
    E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Am. Meteorol. Soc. 77, 437–471 (1996).CrossRefGoogle Scholar
  33. 33.
    G. M. Martin, M. A. Ringer, V. D. Pope, et al., “The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Pt. I: Model Description and Global Climatology,” J. Clim. 19, 1274–1301 (2006).CrossRefGoogle Scholar
  34. 34.
    W. B. Rossow and E. Duenas, “The International Satellite Cloud Climatology Project(ISCCP) Web Site: an Online Resource for Research,” Bull. Am. Meteorol. Soc. 85, 167–172 (2004).CrossRefGoogle Scholar
  35. 35.
    I. I. Mokhov and A. V. Chernokulsky, “Global cloudiness: Tendencies of Change from ISCCP Data,” in Research Activities in Atmospheric and Oceanic Modelling, Ed. by J. Cote, WMO/TD-№ 1161, pp. 02.07–02.08 (2003).Google Scholar
  36. 36.
    A. V. Chernokulsky and I. I. Mokhov, “Global and Regional Cloudiness Changes by Satellite Data: Relationship with Temperature and El Nino Effects,” in Research Activities in Atmospheric and Oceanic Modelling, Ed. by J. Cote, WMO/TD-№ 1347, pp. 02.09–02.10 (2006).Google Scholar
  37. 37.
    I. I. Mokhov and M. E. Schlesinger, “Analysis of Global Cloudiness. 1. Comparison of ISCCP, Meteor and Nimbus 7 Satellite Data,” J. Geophys. Res. 98, 849 (1993).CrossRefGoogle Scholar
  38. 38.
    I. I. Mokhov and M. E. Schlesinger, “Analysis of Global Cloudiness. 2. Comparison of Ground-Based and Satellite-Based Cloud Climatologies,” J. Geophys. Res. 99(D8), 17.045 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • K. E. Muryshev
    • 1
  • A. V. Eliseev
    • 1
    Email author
  • I. I. Mokhov
    • 1
  • N. A. Diansky
    • 2
  1. 1.A.M. Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations