Izvestiya, Atmospheric and Oceanic Physics

, Volume 45, Issue 2, pp 169–181 | Cite as

Russian climate studies in 2003–2006

Article

Abstract

Results of Russian studies of climate and climate change prepared for the National Report on Meteorology and Atmospheric Sciences submitted to the 24th General Assembly of the International Union of Geodesy and Geophysics (Perugia, July 2–13, 2007 are presented).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ACIA, Impacts of Warming Arctic: Arctic Climate Impact Assessment (Cambridge Univ. Press, Cambridge, 2004).Google Scholar
  2. 2.
    G. V. Alekseev, “Studies of Arctic Climate Changes in the 20th Century,” Tr. Arkt. Antarkt. Nauchn.-Issled. Inst. 446, 6–21 (2003).Google Scholar
  3. 3.
    Formation and Dynamics of the Present-Day Climate in the Arctic, Ed. by G. V. Alekseev (Gidrometeoizdat, St. Petersburg, 2004) [in Russian].Google Scholar
  4. 4.
    G. V. Alekseev and N. E. Ivanov, “Regional and Seasonal Features of Warmings in the Arctic in the 1930s and 1990s,” Tr. Arkt. Antarkt. Nauchn.-Issled. Inst. 446, 41–47 (2003).Google Scholar
  5. 5.
    G. V. Alekseev, S. I. Kuz’mina, O. G. Aniskina, and N. E. Kharlanenkova, “Natural and Anthropogenic Components of Variations in Surface Air Temperature in the Arctic in the 20th Century As Inferred from Observational Data and Simulations,” Tr. Arkt. Antarkt. Nauchn.-Issled. Inst. 446, 22–30 (2003).Google Scholar
  6. 6.
    G. V. Alekseev and A. P. Nagurnyi, “Effect of Sea Ice Cover on the Concentration of Carbon Dioxide in the Arctic Atmosphere in Winter,” Dokl. Akad. Nauk 401, 817–820 (2005).Google Scholar
  7. 7.
    O. A. Anisimov and M. A. Belolutskaya, “Present Warming As an Analogue of the Future Climate,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 211–221 (2003) [Izv., Atmos. Ocean. Phys. 39, 187–196 (2003)].Google Scholar
  8. 8.
    O. A. Anisimov and M. A. Belolutskaya, “Modeling the Effect of Anthropogenic Warming on Permafrost: Consideration for Vegetation Influence,” Meteorol. Gidrol. No. 11, 73–82 (2004).Google Scholar
  9. 9.
    O. A. Anisimov, I. I. Borzenkova, J. Vandenberge, et al., “Rapid Climate Warming at the Late Ice Age-Holocene Boundary As a Possible Analogue of Changes in Climate and Environment in the First Quarter of the 1st Century,” Meteorol. Gidrol., No. 12, 31–41 (2004).Google Scholar
  10. 10.
    Arctic Environment Variability in the Context of the Global Change, Ed. by P. Bobylev, K. A. Kondratyev, and O. M. Johannessen (Springer-Praxis, Chishester, 2003).Google Scholar
  11. 11.
    M. Yu. Bardin and A. B. Polonsky, “North Atlantic Oscillation and Synoptic Variability in the European Atlantic Region in Winter,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 147–157 (2005) [Izv., Atmos. Ocean. Phys. 41, 127–136 (2005)].Google Scholar
  12. 12.
    A. I. Bedritskii, A. A. Korshunov, L. A. Khandozhko, and M. Z. Shaimardanov, “Climatic System and the Provision of Hydrometeorological Safety for the Vitality of Russia,” Meteorol. Gidrol., No. 4, 120–129 (2004).Google Scholar
  13. 13.
    L. Bengtsson, V. A. Semenov, and O. Johannessen, The Early Century Warming in the Arctic—A Possible Mechanism, MPI Report, no. 31 (2003).Google Scholar
  14. 14.
    V. A. Bol’shakov, New Concept of an Orbital Theory of Paleoclimate (Mosk. Gos. Univ., Moscow, 2003) [in Russian].Google Scholar
  15. 15.
    I. I. Borzenkova, “Determination of Global Climate Sensitivity to the Gas Composition of the Atmosphere from Paleoclimatic Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 222–228 (2003) [Izv., Atmos. Ocean. Phys. 39, 197–202 (2003)].Google Scholar
  16. 16.
    I. I. Borzenkova and N. A. Lemeshko, “Water Balance of the Volga Basin in the Beginning of the 21st Century (on the Basis of Paleoclimatic Scenarios),” Meteorol. Gidrol., No. 7, 52–60 (2005).Google Scholar
  17. 17.
    V. I. Byshev, Synoptic and Large-Scale Variability of the Ocean and Atmosphere (Nauka, Moscow, 2003) [in Russian].Google Scholar
  18. 18.
    S. Bony, R. Colman, V. Katssov, et al., “How Well Do We Understand and Evaluate Climate Change Feedback Processes?,” J. Clim. 19, 3445–3482 (2006).Google Scholar
  19. 19.
    Climate Change and Russian Population Health in the 21st Century (Adamant, Moscow, 2004) [in Russian].Google Scholar
  20. 20.
    Climate Change 2007a: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovermental Panel on Climate Change, Ed. by S. Solomon et al. (Cambridge Univ. Press, Cambridge, 2007).Google Scholar
  21. 21.
    Climate Change 2007b: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovermental Panel on Climate Change, Ed. by M. Parry et al. (Cambridge Univ. Press, Cambridge, 2007).Google Scholar
  22. 22.
    Climate Change 2007c: Mitigation. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by B. Metz et al. (Cambridge Univ. Press, Cambridge, 2007).Google Scholar
  23. 23.
    Current Global Changes in Natural Media (Nauchnyi Mir, Moscow, 2006), Vol. 1 [in Russian].Google Scholar
  24. 24.
    A. I. Danilov, V. E. Lagun, A. V. Klepikov, et al., “Current Changes in Antarctic Climate and Scenarios for Its future Changes,” Arkt. Anktarkt, No. 36, 114–124 (2003).Google Scholar
  25. 25.
    N. M. Datsenko and N. N. Ivashchenko, “Estimation of the Variability of Surface Air Temperature in the Northern Hemisphere in One-Thousand Series of Paleoreconstructions with the Aid of Multiscale Analysis,” Meteorol. Gidrol., No. 10, 36–44 (2006).Google Scholar
  26. 26.
    N. M. Datsenko, A. S. Monin, and A. A. Berestov, “Oscillations of Global Climate over the Past 150 Years,” Dokl. Akad. Nauk 399, 253–256 (2004).Google Scholar
  27. 27.
    P. F. Demchenko, A. V. Eliseev, M. M. Arzhanov, and I. I. Mokhov, “Impact of Global Warming Rate on Permafrost Degradation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42(1), 35–43 (2006) [Izv., Atmos. Ocean. Phys. 42, 32–39 (2006)].Google Scholar
  28. 28.
    V. G. Dmitriev and I. E. Frolov, Current Situation in Russian Arctic, Prospects and Possible Ways of Social and Economic Development of the Region (Analytical Report) (AANII, St. Petersburg, 2006) [in Russian].Google Scholar
  29. 29.
    E. V. Dmitriev and A. I. Chavro, “Possible Causes of the Underestimation of Paleoclimate Low-Frequency Variability by Statistical Methods,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 637–649 (2006) [Izv., Atmos. Ocean. Phys. 42, 586–597 (2006)].Google Scholar
  30. 30.
    E. V. Dmitriev and A. I. Chavro, “Possibilities of Reconstructing Paleoclimate with the Methods of Mathematical Statistics,” Meteorol. Gidrol., No. 11, 11–25 (2005).Google Scholar
  31. 31.
    N. L. Dobretsov, V. S. Zykin, and V. S. Zykina, “Structure and Periodicity of Forming the Pleistocene Forest- Soil Sequence in Western Siberia and Its Comparison with Baikal and Global Chronicles of Climate Change,” Dokl. Akad. Nauk 391, 821–824 (2003).Google Scholar
  32. 32.
    D. Dommenget, V. Semenov, and M. Latif, “Impacts of the Tropical Indian and Atlantic Oceans on ENSO,” Geophys. Rev. Lett. 33, doi: 10.1029/2006GL025871, 11701 (2006).Google Scholar
  33. 33.
    V. P. Dymnikov, E. M. Volodin, V. Ya. Galin, et al., “Sensitivity of a Climatic System to Small External Forcings,” Meteorol. Gidrol., No. 4, 77–91 (2004).Google Scholar
  34. 34.
    V. P. Dymnikov, E. M. Volodin, V. Ya. Galin, et al., Modeling of Climate and Its Changes (Nauka, Moscow, 2005) [in Russian].Google Scholar
  35. 35.
    V. P. Dymnikov and A. S. Gritsun, “Current Problems in the Mathematical Theory of Climate,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 294–314 (2005) [Izv., Atmos. Ocean. Phys. 41, 266–284 (2005)].Google Scholar
  36. 36.
    V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Problems of Modeling Climate and Climate Change,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 618–636 (2006) [Izv., Atmos. Ocean. Phys. 42, 568–585 (2006)].Google Scholar
  37. 37.
    I. G. Dyominov and A. M. Zadorozhnyi, “Contribution of Natural and Anthropogenic Factors to Long-Term Changes in the Earth’s Ozone Layer at the End of the 20th Century,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 51–65 (2005) [Izv., Atmos. Ocean. Phys. 41, 43–55 (2005)].Google Scholar
  38. 38.
    T. A. Egorova, E. V. Rozanov, V. A. Zubov, and I. L. Karol’, “Model for Investigating Ozone Trends (MEZON),” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 310–326 (2003) [Izv., Atmos. Ocean. Phys. 39, 277–292 (2003)].Google Scholar
  39. 39.
    A. V. Eliseev, M. S. Guseva, I. I. Mokhov, and K. G. Rubinshtein, “Amplitude-Phase Characteristics of the Annual Cycle of Surface Temperature: Comparison of AGCM Output and Reanalysis Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 435–449 (2004) [Izv., Atmos. Ocean. Phys. 40, 381–393 (2004)].Google Scholar
  40. 40.
    A. V. Eliseev and I. I. Mokhov, “Sensitivity of Climate-Carbon Cycle Feedback to the Choice of Determining Parameters of the Carbon Cycle of Land in a Model of Intermediate Complexity,” Vych. Tekhnol. 11, 14–19 (2006).Google Scholar
  41. 41.
    A. V. Eliseev, I. I. Mokhov, and M. S. Guseva, “Sensitivity of Amplitude-Phase Characteristics of the Surface Air Temperature Annual Cycle to Variations in Annual Mean Temperature,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 326–340 (2006) [Izv., Atmos. Ocean. Phys. 42, 300–312 (2006)].Google Scholar
  42. 42.
    N. A. Efimova, E. L. Zhil’tsova, N. A. Lemeshko, and L. A. Strokina, “Comparison of Climate Changes in 1981–2000 with Global-Warming Paleoanalogues,” Meteorol. Gidrol., No. 8, 18–23 (2004).Google Scholar
  43. 43.
    A. V. Eliseev and I. I. Mokhov, “Amplitude-Phase Characteristics of Annual Cycle of Surface Air Temperature in Northern Hemisphere,” Adv. Atmos. Sci. 10, 1–16 (2003).Google Scholar
  44. 44.
    A. V. Eliseev, M. S. Guseva, I. I. Mokhov, and K. G. Rubinstein, “Atmospheric and Coupled Model Intercomparison in Terms of Amplitude-Phase Characteristics of Surface Air Temperature Annual Cycle,” Adv. Atmos. Sci. 21, 837–847 (2004).Google Scholar
  45. 45.
    M. I. Fortus, “Statistical Analysis of Series of Dendrochronological Indices,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 136–139 (2006) [Izv., Atmos. Ocean. Phys. 42, 124–126 (2006)].Google Scholar
  46. 46.
    V. Frolov, Modeling Multiyear Oscillations in the Caspian Sea Level: Theory and Applications (GEOS, Moscow, 2003) [in Russian].Google Scholar
  47. 47.
    V. Yu. Georgievsky and I. A. Shiklomanov, “Climate Change and Water Resource,” in World Water Resources at the Beginning of the 21st Century (Cambridge Univ. Press, Cambridge, 2003), pp. 390–413.Google Scholar
  48. 48.
    P. Ya. Groisman, R. W. Knight, D. R. Easterling, et al., “Trends in Intense Precipitation in the Climate Record,” J. Clim. 18, 1326–1350 (2005).Google Scholar
  49. 49.
    A. N. Gruzdev and G. P. Brasseur, “Long-Term Changes in the Mesosphere Calculated by a Two-Dimensional Model,” J. Geophys. Res. 110, doi: 10.1029/2003JD004410, D03304 (2005).Google Scholar
  50. 50.
    A. F. Glazovskii, et al., “Glaciers of the Urals—Current State and Prospects for Evolution,” Mater. Glyatsiol. Issled., No. 98, 1–10 (2005).Google Scholar
  51. 51.
    G. S. Golitsyn, Dynamics of Natural Phenomena (Fizmatlit, Moscow, 2004) [in Russian].Google Scholar
  52. 52.
    G. S. Golitsyn, L. K. Efimova, I. I. Mokhov, et al., “Long-Period Changes in the Temperature Regime of Precipitation in St. Petersburg from Empirical Data and Model Estimates for Regional Changes in the Past and Future,” Meteorol. Gidrol., No. 8, 5–17 (2004).Google Scholar
  53. 53.
    V. A. Golovko, L. A. Pakhomov, and A. B. Uspenskii, “Global Monitoring of the Components of the Earth’s Radiation Balance from Meteor-3” and “Resurs-01 Satellites,” Meteorol. Gidrol., No. 1, 56–73 (2003).Google Scholar
  54. 54.
    L. L. Golubyatnikov and E. A. Denisenko, “Interrelation between the Vegetation Index and the Climatic Parameters and Structural Characteristics of Vegetation Cover,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 524–538 (2006) [Izv., Atmos. Ocean. Phys. 42, 484–496 (2006)].Google Scholar
  55. 55.
    L. L. Golubyatnikov, I. I. Mokhov, E. A. Denisenko, and V. A. Tikhonov, “Model Estimates of Climate Change Impact on the Vegetation Cover and Atmospheric Carbon Sink,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 22–32 (2005) [Izv., Atmos. Ocean. Phys. 41, 19–28 (2005)].Google Scholar
  56. 56.
    E. V. Gorbarenko, A. E. Erokhina, and A. B. Lukin, “Multiyear Variations in the Atmospheric Optical Depth in Russia,” Meteorol. Gidrol., No. 7, 41–48 (2006).Google Scholar
  57. 57.
    G. V. Gruza and E. Ya. Ran’kova, “Climate Oscillations and Changes over Russia,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 147–155 (2003) [Izv., Atmos. Ocean. Phys. 39, 145–162 (2003)].Google Scholar
  58. 58.
    G. V. Gruza and E. Ya. Ran’kova, “Climate in the Nearest Future,” Zemlya Vselennaya, No. 6, 3–9 (2004).Google Scholar
  59. 59.
    G. V. Gruza and E. Ya. Ran’kova, “Detection of Climate Changes: Climate State, Variability, and Extreme Properties,” Meteorol. Gidrol., No. 4, 50–66 (2004).Google Scholar
  60. 60.
    G. V. Gruza, V. V. Maistrova, I. I. Bol’shakova, and O. L. Zhukova, “Multiyear Oscillations in the Temperature of the Free Atmosphere in the Southern Polar,” Meteorol. Gidrol., No. 4, 5–17 (2005).Google Scholar
  61. 61.
    G. V. Gruza, E. Ya. Ran’kova, L. N. Aristova, and L. K. Kleshchenko, “Uncertainty in Some Scenario Climatic Forecasts for Air Temperature and Precipitation in Russia,” Meteorol. Gidrol., No. 10, 5–23 (2006).Google Scholar
  62. 62.
    D. Yu. Gushchina and B. Dewitte, “Interannual Climate Variability and Teleconnections in a Quasi-Equilibrium Tropical Circulation Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 435–463 (2005) [Izv., Atmos. Ocean. Phys. 41, 393–417 (2005)].Google Scholar
  63. 63.
    I. I. Ippolitov, M. V. Kabanov, A. I. Komarov, and A. I. Kuskov, “Current Natural Climatic Changes in Siberia: The Behavior of Annual Mean Surface Temperatures and Pressure,” Geogr. Prir. Resursy, No. 3, 90–95 (2004).Google Scholar
  64. 64.
    Yu. A. Izrael’, “Effective Way of Climate Preservation at the Current Level—the Main Aim of Solving the Climate Problem,” Meteorol. Gidrol., No. 10, 5–9 (2005).Google Scholar
  65. 65.
    Yu. A. Izrael’, A. V. Pavlov, Yu. A. Anokhin, et al., “Statistical Estimates for Variations in Climate Elements in the Russian Permafrost Regions,” Meteorol. Gidrol., No. 5, 27–38 (2006).Google Scholar
  66. 66.
    Yu. A. Izrael’ and S. M. Semenov, “Example of Calculating the Critical Boundaries of the Atmospheric Content of Greenhouse Gases with the Aid of a Minimal Imitation Model of the Greenhouse Effect,” Dokl. Akad. Nauk 390, 533–536 (2003).Google Scholar
  67. 67.
    Yu. A. Izrael’ and S. M. Semenov, “Calculation of Variations in the CO2 Concentration in the Atmosphere for Some Stabilization Scenarios of CO2 Emission with a Model of Intermediate Complexity,” Meteorol. Gidrol., No. 1, 5–13 (2005).Google Scholar
  68. 68.
    Yu. A. Izrael’ and O. D. Sirotenko, “Modeling the Influence of Climate on Agriculture Productivity in Russia,” Meteorol. Gidrol., No. 6, 5–17 (2003).Google Scholar
  69. 69.
    O. M. Johannessen, L. Bengtsson, M. W. Miles, et al., “Arctic Climate Change: Observed and Modeled Temperature and Sea Ice Variability,” Tellus A 56, 328–341 (2004).Google Scholar
  70. 70.
    O. M. Johannessen, K. Khvorostovsky, M. W. Miles, et al., “Recent Ice-Sheet Growth in the Interior of Greenland,” Science 310, 1013–1016 (2005).Google Scholar
  71. 71.
    T. Jung, S. K. Gulev, I. Rudeva, and V. Soloviev, “Sensitivity of Extratropical Cyclone Characteristics to Horizontal Resolution in the ECMWF Model,” Q.J.R. Meteorol. Soc. doi: 1256/qj.05.512 (2006).Google Scholar
  72. 72.
    M. V. Kabanov and V. N. Lykosov, “Monitoring and Modeling Natural Climatic Changes in Siberia,” Opt. Atmos. Okeana 19, 753–756 (2006).Google Scholar
  73. 73.
    I. L. Karol’ and A. A. Kiselev, “Photochemical Models of the Atmosphere and Their Application in Ozonosphere and Climate Studies: a Review,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 3–34 (2006) [Izv., Atmos. Ocean. Phys. 42, 1–31 (2006)].Google Scholar
  74. 74.
    V. M. Kattsov, S. V. Vavulin, V. A. Govorkova, and T. V. Pavlova, “Scenarios of Arctic Climate Change in the 21st Century,” Meteorol. Gidrol., No. 10, 5–19 (2003).Google Scholar
  75. 75.
    V. M. Kattsov and V. P. Meleshko, “Evaluation of Atmosphere-Ocean General Circulation Models Used for Projecting Future Climate Change,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, (2004) [Izv., Atmos. Ocean. Phys. 40, 723–736 (2004)].Google Scholar
  76. 76.
    A. A. Kiselev and I. L. Karol’, “Response of Tropospheric Gas Composition in Northern Midlatitudes to a Possible Methane Outbreak from the Earth’s Subsoil to the Atmosphere 39, 579–588 (2003) [Izv., Atmos. Ocean. Phys. 39, 521–529 (2003)].Google Scholar
  77. 77.
    L. M. Kitaev, V. N. Razuvaev, R. Kheino, and E. Forland, “Duration of Snow Cover Occurrence in Northern Europe,” Meteorol. Gidrol., No. 3, 95–100 (2006).Google Scholar
  78. 78.
    L. M. Kitaev, V. F. Radionov, E. Forland, et al., “Duration of Stable Snow Cover Occurrence in Northern Eurasia under Current Climate Changes,” Meteorol. Gidrol., No. 11, 65–72 (2004).Google Scholar
  79. 79.
    Climate Changes: View from Russia, Ed. by V. I. Danilov-Danil’yan (TEIS, Moscow, 2003) [in Russian].Google Scholar
  80. 80.
    V. Katssov and E. Kállén, Future Climate Change: Modeling and Scenarios for the Arctic,” in Arctic Climate Impact Assessment(ACIA) (Cambridge Univ. Press, Cambridge, 2005), pp. 99–150.Google Scholar
  81. 81.
    V. M. Khan, A. M. Sterin, and K. G. Rubinshtein, “Estimates for Temperature Trends in the Free Atmosphere from Reanalysis and Radio-Sounding Data,” Meteorol. Gidrol., No. 12, 5–18 (2003).Google Scholar
  82. 82.
    V. Ch. Khon and I. I. Mokhov, “Model Estimates for the Sensitivity of Atmospheric Centers of Action to Global Climate Changes,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 749–756 (2006) [Izv., Atmos. Ocean. Phys. 42, 688–695 (2006)].Google Scholar
  83. 83.
    D. B. Kiktev, et al., “Comparison of Modeled and Observed Trends in Indices of Daily Climate Extremes,” J. Clim. 16, 3560–3571 (2003).Google Scholar
  84. 84.
    V. V. Klimenko, Cold Climate of the Early Subatlantic Epoch in the Northern Hemisphere (MEI, Moscow, 2004) [in Russian].Google Scholar
  85. 85.
    V. V. Klimenko and A. M. Sleptsov, “Complex Reconstruction of the Climate of Eastern Europe over the Past 2000 Years,” Izv. RGO, No. 6, 45–53 (2003).Google Scholar
  86. 86.
    N. V. Kobysheva, M. V. Klyueva, A. A. Aleksandrova, and O. N. Bulygina, “Climatic Characteristics of the Heating Season in Russian Federation Regions in the Present and Future,” Meteorol. Gidrol., No. 8, 46–52 (2004).Google Scholar
  87. 87.
    K. Ya. Kondrat’ev and V. F. Krapivin, Modeling Global Carbon Cycle (2004).Google Scholar
  88. 88.
    V. M. Kotlyakov, V. G. Zakharov, and M. Yu. Moskalevskii, “Remote Monitoring of Oscillations in the Edge of Antarctic Ice Cover,” Arkt. Antarkt. No. 36, 48–62 (2003).Google Scholar
  89. 89.
    S. I. Kuzmina, L. Bengtsson, O. M. Johannessen, et al., “The North Atlantic Oscillation and Greenhouse-Gas Forcing,” Geophys. Rev. Lett. 32, L04703 (2005).Google Scholar
  90. 90.
    V. M. Kotlyakov and M. Yu. Moskalevskii, “Continental Antarctic Sink,” Dokl. Akad. Nauk 391, 686–688 (2003).Google Scholar
  91. 91.
    M. I. Kuz’min and V. V. Yarmolyuk, “Orogenic Processes and Climate Changes in the Eart’s History,” Geol. Geofiz. 47, 7–25 (2006).Google Scholar
  92. 92.
    G. P. Kurbatkin, “Amplification Mechanism for the Amplitude of the Annual Cycle of Continental-Scale Tropospheric Temperature Anomalies,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 147–156 (2006) [Izv., Atmos. Ocean. Phys. 42, 129–137 (2006)].Google Scholar
  93. 93.
    V. Ya. Lipenkov, A. N. Salamatin, and A. A. Ekaikin, “Paleoclimatic Reconstructions from Deep Ice Cores at the Vostok Station,” Arkt. Antarkt., No. 36, 85–99 (2003).Google Scholar
  94. 94.
    A. A. Makarov and V. E. Frolov, “Tendencies of Development of World Power Generation and the Power- Generating Strategy of Russia,” Vestn. Ross. Akad. Nauk, No. 3, 195–208 (2004).Google Scholar
  95. 95.
    E. L. Makhotkina, I. N. Plakhina, and A. B. Lukin, “Some Features in Atmospheric Turbidity Variations in Russia in the Last Quarter of the 20th Century,” Meteorol. Gidrol., No. 1, 28–36 (2005).Google Scholar
  96. 96.
    S. P. Malevskii-Malevich, E. K. Mol’kenti, E. D. Nadezhina, and O. B. Sklyarevich, “Assessment of Changes in Fire Risks in Russian Forests under the Expected Climate Warming in the 21st Century,” Meteorol. Gidrol., No. 3, 36–44 (2005).Google Scholar
  97. 97.
    Materials for a Strategic Prediction of Russian Climate Changes by 2010–2015 and of Their Influence on the Russian Economy (Rosgidromet, Moscow, 2005) [in Russian].Google Scholar
  98. 98.
    V. P. Meleshko, G. S. Golitsyn, V.A. Govorkova, et al., “Possible Anthropogenic Changes in Russian Climate in the 21st Century: Estimations from an Ensemble of Climate Models,” Meteorol. Gidrol., No. 4, 38–49 (2004).Google Scholar
  99. 99.
    V. P. Meleshko, V. M. Kattsov, V. A. Govorkova, et al., “Anthropogenic Climate Changes in the 21st Century in Northern Eurasia,” Meteorol. Gidrol., No. 7, 5–26 (2004).Google Scholar
  100. 100.
    A. V. Meshcherskaya, I. F. Getman, M. M. Borisenko, et al., “Monitoring of Wind Velocity on the Volga and Ural Watershed in the 20th Century,” Meteorol. Gidrol., No. 3, 83–97 (2004).Google Scholar
  101. 101.
    A. V. Meshcherskaya, V. V. Eremin, A. A. Baranova, and V. V. Maistrova, “Change in the Wind Velocity in Northern Russia in the Second Half of the 20th Century from Surface- and Upper-Air Data,” Meteorol. Gidrol., No. 9, 46–58 (2006).Google Scholar
  102. 102.
    V. M. Mirvis and I. P. Guseva, “Assessments of Changes in the Frost-Free Vegetation Period in Russia and Adjacent Countries in the 20th Century,” Meteorol. Gidrol., No. 1, 106–113 (2006).Google Scholar
  103. 103.
    A. Moberg, D. M. Sonechkin, K. Holmgren, et al., “Highly Variable Northern Hemisphere Temperatures Reconstructed from Low- and High-Resolution Proxy Data,” Nature 433, doi: 10.1038/nature03265, 613–617 (2005).Google Scholar
  104. 104.
    A. Moberg, D. M. Sonechkin, K. Holmgren, et al., “Corrigendum: Highly Variable Northern Hemisphere Temperatures Reconstructed from Low- and High-Resolution Proxy Data,” Nature 439, doi: 10.1038/nature04575, 1014 (2006).Google Scholar
  105. 105.
    I. I. Mokhov and D. A. Smirnov, “El Niño/Southern Oscillation Drives North Atlantic Oscillation as Revealed with Nonlinear Techniques from Climatic Indices,” Geophys. Rev. Lett. 33, doi: 10.1029/2005GL024557, L03708 (2006).Google Scholar
  106. 106.
    I. I. Mokhov, D. V. Khvorostyanov, and A. V. Eliseev, “Decadal and Longer Term Changes in El Niño-Southern Oscillation Characteristics,” Int. J. Climatol. 24, 401–414 (2004).Google Scholar
  107. 107.
    I. I. Mokhov, “Climate Studies in Russia in 1999–2002,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 147–155 (2004) [Izv., Atmos. Ocean. Phys. 40, 127–133 (2004)].Google Scholar
  108. 108.
    I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, et al., “Climatic Changes and Their Estimations with the IAP RAS Global Model,” Dokl. Akad. Nauk 402, 591–595 (2005).Google Scholar
  109. 109.
    I. I. Mokhov, V. A. Bezverkhny, and A. A. Karpenko, “Milankovich Cycles and the Evolution of Climatic- Regime Characteristics and Atmospheric Composition from the Data of Ice Cores at the Vostok Antarctic Station,” Mater. Glyatsiol. Issled. 95, 3–8 (2003).Google Scholar
  110. 110.
    I. I. Mokhov, V. A. Bezverkhny, and A. A. Karpenko, “Diagnosis of Relative Variations in Atmospheric Greenhouse Gas Contents and Temperature from Vostok Antarctic Ice Core Paleoreconstructions,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 579–592 (2005) [Izv., Atmos. Ocean. Phys. 41, 523–536 (2005)].Google Scholar
  111. 111.
    I. I. Mokhov, V. A. Bezverkhny, A. V. Eliseev, and A. A. Karpenko, “Interrelation between Variations in Global Surface Air Temperature and Variations in Solar Activity from the Data of Observations and Reconstructions for the 17th–20th Centuries and from Model Computations,” Dokl. Akad. Nauk 409, 115–119 (2006).Google Scholar
  112. 112.
    I. I. Mokhov, V. A. Bezverkhny, A. V. Eliseev, and A. A. Karpenko, “Model Estimations of Global Climate Changes in the 20th Century with Consideration for Different Scenarios of Solar Activity,” Dokl. Akad. Nauk 411, 250–253 (2006).Google Scholar
  113. 113.
    I. I. Mokhov, et al., “Changes in Drought Regimes and Bioproductivity of Ground Ecosystems in Northern Eurasia from Calculations with a Global Climate Model with the Carbon Cycle,” Dokl. Akad. Nauk 405, 810–814 (2005).Google Scholar
  114. 114.
    I. I. Mokhov, A. V. Eliseev, and A. A. Karpenko, “Sensitivity of the IAP RAS Global Climate Model with an Interactive Carbon Cycle to Anthropogenic Forcings,” Dokl. Akad. Nauk 407, 400–404 (2006).Google Scholar
  115. 115.
    I. I. Mokhov, A. V. Eliseev, and A. A. Karpenko, “Climate- Carbon Cycle Interaction in the 20th and 21st Centuries from Calculations with a Global Climate Model,” Vychysl. Tekhnol. 11, 156–165 (2006).Google Scholar
  116. 116.
    I. I. Mokhov, A. A. Karpenko, and P. A. Skott, “Highest Rates of Regional Climate Warming in Recent Decades with Assessment of the Role of Natural and Anthropogenic Causes,” Dokl. Akad. Nauk 406, 538–543 (2006).Google Scholar
  117. 117.
    I. I. Mokhov, E. Rekner, V. A. Semenov, and V. Ch. Khon, “Possible Regional Changes in the Regimes of Precipitation in Northern Eurasia in the 21st Century,” Vodn. Resur. 33, 754–762 (2006).Google Scholar
  118. 118.
    I. I. Mokhov, V. A. Semenov, and V. Ch. Khon, “Estimates of Possible Regional Hydrologic Regime Changes in the 21st Century Based on Global Climate Models,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 150–165 (2003) [Izv., Atmos. Ocean. Phys. 39, 130–144 (2003)].Google Scholar
  119. 119.
    I. I. Mokhov, A. V. Chernokul’skii, and I. M. Shkol’nik, “Regional Model Estimates of Fire Risks under Global Climate Changes,” Dokl. Akad. Nauk 411, 808–811 (2006).Google Scholar
  120. 120.
    A. S. Monin and D. M. Sonechkin, Oscillations in Climate from Observational Data: Triple Solar and Other Cycles (Nauka, Moscow, 2005) [in Russian].Google Scholar
  121. 121.
    P. Nagurnyi, G. V. Alekseev, and V. G. Korostelev, “Sea Ice Thickness Changes in the Arctic Ocean in Winter in 1970–1990,” Meteorol. Gidrol., No. 7, 45–51 (2005).Google Scholar
  122. 122.
    V. I. Naidenov, Nonlinear Dynamics of Land Surface Waters (Nauka, Moscow, 2004) [in Russian].Google Scholar
  123. 123.
    M. Nazarov and Yu. A. Izrael’, M. L. Gitarskii, et al., “Anthropogenic Impact on Climate and the Kyoto Protocol,” Meteorol. Gidrol., No. 4, 137–148 (2004).Google Scholar
  124. 124.
    E. S. Nesterov, “Phases of the North Atlantic Oscillation,” Meteorol. Gidrol., No. 1, 64–74 (2003).Google Scholar
  125. 125.
    NEESPI (Northern Eurasia Earth Science Partnership Initiative) Executive Overview, 2004 (http://neespi.org/science/)
  126. 126.
    V. Pavlov, “Permafrost-Climate Changes in Northern Russia: Observations, Prognosis,” Izv. Akad. Nauk, Ser. Geogr., No. 6, 39–50 (2003).Google Scholar
  127. 127.
    V. Pavlov and G. V. Anan’eva, “Estimation of Current Variations in Air Temperature at the Territory of the Russian Cryolite Zone,” Krios. Zemli 8(2), 3–9 (2004).Google Scholar
  128. 128.
    V. Pavlov and G. V. Malkova, Current Climate Changes in Northern Russia (Geo, Novosibirsk, 2005) [in Russian].Google Scholar
  129. 129.
    V. Pavlov, Yu. B. Skachkov, and N. B. Kakunov, “Interrelation between Multiyear Changes in the Depth of Seasonal Ground Thawing and Meteorological Factors,” Krios. Zemli 8(4), 3–11 (2004).Google Scholar
  130. 130.
    G. N. Panin, R. M. Mamedov, and I. V. Mitrofanov, Current State of the Caspian Sea (Nauka, Moscow, 2005) [in Russian].Google Scholar
  131. 131.
    Yu. P. Perevedentsev, Climate Theory (Izd. Kazanskogo Univ., Kazan, 2004) [in Russian].Google Scholar
  132. 132.
    Yu. P. Perevedentsev, M. A. Vereshchagin, E. P. Naumov, et al., “Features in the Manifestation of the Present-Day Climate in the Troposphere of the Atlantic European Region,” Meteorol. Gidrol., No. 2, 38–47 (2004).Google Scholar
  133. 133.
    V. Petoukhov, M. Claussen, A. Berger, et al., “EMIC Intercomparison Project (EMIP-CO2): Comparative Analysis of EMIC Simulations of Current Climate and Equilibrium and Transient Responses to Atmospheric CO2 Doubling,” Clim. Dyn. 25, 363–385 (2005).Google Scholar
  134. 134.
    M. A. Petrosyants, E. K. Semenov, D. Yu. Gushchina, et al., Atmospheric Circulation in the Tropics: Climate and Variability (MAKS Press, Moscow, 2005) [in Russian].Google Scholar
  135. 135.
    O. M. Pokrovskii, E. L. Makhotkina, I. O. Pokrovskii, et al., “Tendencies of Interannual Oscillations in the Components of the Radiation Balance and Land Surface Albedo in Russia,” Meteorol. Gidrol., No. 5, 37–46 (2004).Google Scholar
  136. 136.
    Polyakov, G. V. Alekseev, R. V. Bekryaev, et al., “Long-Term Ice Variability in Arctic Marginal Seas,” J. Clim. 15, 2078–2085 (2003).Google Scholar
  137. 137.
    Polyakov, R. V. Bekryaev, G. V. Alekseev, et al., “Variability and Trends of Air Temperature and Pressure in the Maritime Arctic,” J. Clim. 16, 2067–2077 (2003).Google Scholar
  138. 138.
    V. V. Popova and A. B. Shmakin, “Circulation Mechanisms of Large-Scale Winter Anomalies in Air Temperature in Northern Eurasia at the End of the 20th Century,” Meteorol. Gidrol., No. 12, 15–25 (2006).Google Scholar
  139. 139.
    Possibilities for Prevention of Climate Change and Its Negative Consequences: the Problem of the Kyoto Protocol: Materials of the Workshop under the Aegis of the President of the Russian Academy of Sciences (Nauka, Moscow, 2006) [in Russian].Google Scholar
  140. 140.
    Problems of the Northern Sea Route, SOPS RAN/TsNIIMF (Nauka, Moscow, 2006) [in Russian].Google Scholar
  141. 141.
    Proceedings of the World Conference on Climate Change (Moscow, 2003) (Novosti, Moscow, 2004) [in Russian].Google Scholar
  142. 142.
    A. Prokopenko, E. V. Karabanov, M. I. Kuz’min, et al., “Short-Term Climatic Events 130–70 Thousand Years Ago in a Sediment Record of Lake Baikal,” Geol. Geofiz. 44, 623–637 (2003).Google Scholar
  143. 143.
    Results of Studying Climate Changes for the Strategy of Stable Development of Russia (Rosgidromet, Moscow, 2005) [in Russian].Google Scholar
  144. 144.
    K. G. Rubinshtein and A. S. Ginsburg, “Estimation of Variations in Air Temperature and Precipitation in Large Cities (the Examples of Moscow and New York),” Meteorol. Gidrol., No. 2, 29–38 (2003).Google Scholar
  145. 145.
    Russian National Report. Meteorology and Atmospheric Science. 1999–2002, Ed. by I. I. Mokhov and A. A. Krivolutsky (MAX Press, Moscow, 2003).Google Scholar
  146. 146.
    Russian National Report. Meteorology and Atmospheric Science. 2003–2006, Ed. by I. I. Mokhov and A. A. Krivolutsky (MAX Press, Moscow, 2007.Google Scholar
  147. 147.
    V. Semenov and L. Bengtsson, “Models of the Wintertime Arctic Temperature Variability,” Geophys. Rev. Lett. 30 doi: 10.1029/2003GL017112, 15.1781 (2003).Google Scholar
  148. 148.
    V. Semenov and M. Latif, “Impact of Tropical Pacific Variability on the Mean North Atlantic Thermohaline Circulation,” Geophys. Rev. Lett. 33, doi: 10.1029/2006GL02637, 16708 (2006).Google Scholar
  149. 149.
    S. M. Semenov, Greenhouse Gases and the Earth’s Present-Day Climate (Meteorologiya i Gidrologiya”, Moscow, 2004) [in Russian].Google Scholar
  150. 150.
    S. M. Semenov, V. V. Yasyukevich, and E. S. Gel’ver, Detection of Climatogenic Changes (Meteorologiya i Gidrologiya, Moscow, 2006) [in Russian].Google Scholar
  151. 151.
    I. P. Semiletov, A. Maksshtas, S.-I. Akasofu, et al., “Atmospheric CO2 Balance: The Role of Arctic Sea Ice,” Geophys. Res. Lett. 31, doi: 10.1029/2003GL017996, L05121 (2004).Google Scholar
  152. 152.
    I. A. Shiklomanov and V. Yu. Georgievskii, “Influence of Economic Activity on the Caspian Water Balance and Level Variation,” in Hydrometeorological Aspects of the Problem of the Caspian Sea and Its Basin (Gidrometeoizdat, St. Petersburg, 2003), pp. 267–277 [in Russian].Google Scholar
  153. 153.
    I. M. Shkol’nik, V. P. Meleshko, and V. M. Gavrilina, “Possible Climate Changes in European Russia and Adjacent Territories by the End of the 21st Century: Computation with the GGO Regional Model,” Meteorol. Gidrol., No. 3, 5–16 (2006).Google Scholar
  154. 154.
    A. B. Shmakin and V. V. Popova, “Dynamics of Climate Extremes in Northern Eurasia in the Late 20th Century,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 157–166 (2006) [Izv., Atmos. Ocean. Phys. 42, 138–147 (2006)].Google Scholar
  155. 155.
    O. D. Sirotenko, E. V. Abashina, and V. A. Romanenkov, “Modeling the Influence of Climate Changes on the Dynamics of Organic Carbon in Agricultural Land, CO2 Emission, and Agroecosystem Productivity,” Meteorol. Gidrol., No. 8, 83–95 (2005).Google Scholar
  156. 156.
    O. D. Sirotenko and I. G. Gringof, “Modeling the Processes of Depositing Atmospheric Carbon by the Agrosphere,” Meteorol. Gidrol., No. 11, 81–88 (2006).Google Scholar
  157. 157.
    O. D. Sirotenko, V. A. Romanenkov, and I. G. Gringof, “Assessments of the Effect of Expected Climate Changes on the Agriculture of Russia,” Meteorol. Gidrol., No. 8, 92–101 (2006).Google Scholar
  158. 158.
    S. P. Smyshlyaev, V. Ya. Galin, and E. M. Volodin, “INM RAS Atmospheric General Circulation Model with Ozone Dynamics,” Meteorol. Gidrol., No. 5, 13–23 (2003).Google Scholar
  159. 159.
    S. P. Smyshlyaev, V. Ya. Galin, and E. M. Volodin, “Simulation of the Interannual Variability of the Total Ozone Content in the Midlatitudinal Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 210–221 (2004) [Izv., Atmos. Ocean. Phys. 40, 183–192 (2004)].Google Scholar
  160. 160.
    S. P. Smyshlyaev, V. Ya. Galin, P. A. Zimenko, et al., “Prognostic Estimations of the Atmospheric Ozone Content in the First Half of the 21st Century,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 191–204 (2006) [Izv., Atmos. Ocean. Phys. 42, 171–183 (2006)].Google Scholar
  161. 161.
    S. P. Smyshlyaev, V. Ya. Galin, P. A. Zimenko, and A. P. Kudryavtsev, “Modeling the Effect of Variations in the Spectral Fluxes of Solar Radiation Caused by Solar Activity on the Content of Atmospheric Ozone,” Meteorol. Gidrol., No. 8, 25–37 (2005).Google Scholar
  162. 162.
    D. M. Sonechkin, R. Broevskii, N. N. Ivashchenko, and B. Yakubyak, “Spatiotemporal Scaling of the Fields of Surface Air Temperature,” Meteorol. Gidrol., No. 7, 18–25 (2005).Google Scholar
  163. 163.
    P. V. Sporyshev and V. M. Kattsov, “Spatiotemporal Features of Global Warming,” Dokl. Akad. Nauk 41, 1–6 (2006).Google Scholar
  164. 164.
    M. Sterin, “Sensitivity of Estimates for Troposphere and Lower-Stratosphere Temperature Trends from Radio-Sounding Data: 2. Detection of Irregularities in Series of One-Month-Resolution Data,” Meteorol. Gidrol., No. 6, 5–22 (2004).Google Scholar
  165. 165.
    A. M. Tarko, Anthropogenic Changes in Global Biospheric Processes (Fizmatlit, Moscow, 2005) [in Russian].Google Scholar
  166. 166.
    E. A. Vaganov and S. G. Shiyatov, “Dendroclimatic and Dendroecological Studies in Northern Eurasia,” Lesovedenie, No. 4, 18–27 (2005).Google Scholar
  167. 167.
    N. V. Vakulenko, V. M. Kotlyakov, V. S. Monin, and D. M. Sonechkin, “Evidence for the Fact that Variations in the Concentration of Greenhouse Gases are Preceded by Variations in the Temperature in the Data of the Vostok Station,” Dokl. Akad. Nauk 396, 686–690 (2004).Google Scholar
  168. 168.
    A. A. Velichko, E. M. Zelikson, O. K. Borisova, et al., “Quantitative Reconstruction of the Climate of the East European Plain over the Last 450 Thousand Years,” Izv. Akad. Nauk, Ser. Geogr., No. 1, 7–25 (2004).Google Scholar
  169. 169.
    S. Venevsky, “A Method for Integrated Assessment of Vulnerability to Climate Change in Siberian Forests. Example of Larch Area,” Mitigation Adapt. Strateg. Global Change 11, 241–268 (2006).Google Scholar
  170. 170.
    M. A. Vereshchagin, Yu. P. Perevedentsev, K. M. Shantalinskii, and V. D. Tudrii, “Factor Analysis of the Multiyear Dynamics of the Global Thermal Regime of the Surface Air Layer,” Izv. Akad. Nauk, Ser. Geogr., No. 5, 34–41 (2004).Google Scholar
  171. 171.
    E. M. Volodin and CMIP member groups, “Relation between the Global-Warming Parameter and the Heat Balance on the Earth’s Surface at Increased Contents of Carbon Dioxide,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 40, 306–313 (2004) [Izv., Atmos. Ocean. Phys. 40, 269–275 (2004)].Google Scholar
  172. 172.
    E. M. Volodin and N. A. Diansky, “Response of a Coupled Atmosphere-Ocean General Circulation Model to Increased Carbon Dioxide,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 39, 193–210 (2003) [Izv., Atmos. Ocean. Phys. 39, 170–186 (2003)].Google Scholar
  173. 173.
    E. M. Volodin and N. A. Diansky, “Reproduction of the El-Niño Phenomenon in a Coupled Ocean-Atmosphere General Circulation Model,” Meteorol. Gidrol., No. 12, 5–14 (2004).Google Scholar
  174. 174.
    E. M. Volodin and N. A. Diansky, “Simulation of Climate Changes in the 20th–22nd Centuries with a Cou pled Atmosphere-Ocean General Circulation Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 291–306 (2006) [Izv., Atmos. Ocean. Phys. 42, 267–281 (2006)].Google Scholar
  175. 175.
    World Water Resources at the Beginning of the 21st Century, Ed. by I. A. Shiklomanov (Cambridge Univ. Press, Cambridge, 2003).Google Scholar
  176. 176.
    V. F. Zakharov, “Changes in the Propagation of Arctic Sea Ice in the 20th Century,” Meteorol. Gidrol., No. 5, 75–86 (2003).Google Scholar
  177. 177.
    G. A. Zherebtsov, V. A. Kovalenko, S. I. Molodykh, and O. A. Rubtsova, “Model of the Effect of Solar Activity on the Climatic Characteristics of the Earth’s Troposphere,” Opt. Atmos. Okeana 18, 1042–1050 (2005).Google Scholar
  178. 178.
    G. A. Zherebtsov, V. A. Kovalenko, and S. I. Molodykh, “Radiation Balance of the Atmosphere and Climatic Manifestations of Solar Variability,” Opt. Atmos. Okeana 17, 1003–1017 (2004).Google Scholar
  179. 179.
    O. Zolina, A. Kapala, C. Simmer, and S. K. Gusev, “Analysis of Extreme Precipitation over Europe from Different Reanalyses: a Comparative Assessment,” Global Planet. Change 44, 129–161 (2004).Google Scholar
  180. 180.
    A. N. Zolotokrylin, Climatic Desertification (Nauka, Moscow, 2003) [in Russian].Google Scholar
  181. 181.
    I. I. Zveryaev and P.-S. Chu, “Recent Climate Change in Precipitable Water in the Global Tropics As Revealed in National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis,” J. Geophys. Res. 108, doi: 10.1029/2002JD002476 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.A.M. Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations