Interaction of the methane cycle and processes in wetland ecosystems in a climate model of intermediate complexity

  • A. V. Eliseev
  • I. I. Mokhov
  • M. M. Arzhanov
  • P. F. Demchenko
  • S. N. Denisov
Article

Abstract

The climate model of the Institute of Atmospheric Physics of the Russian Academy of Sciences (IAP RAS CM) has been supplemented with a module of soil thermal physics and the methane cycle, which takes into account the response of methane emissions from wetland ecosystems to climate changes. Methane emissions are allowed only from unfrozen top layers of the soil, with an additional constraint in the depth of the simulated layer. All wetland ecosystems are assumed to be water-saturated. The molar amount of the methane oxidized in the atmosphere is added to the simulated atmospheric concentration of CO2. A control preindustrial experiment and a series of numerical experiments for the 17th–21st centuries were conducted with the model forced by greenhouse gases and tropospheric sulfate aerosols. It is shown that the IAP RAS CM generally reproduces preindustrial and current characteristics of both seasonal thawing/freezing of the soil and the methane cycle. During global warming in the 21st century, the permafrost area is reduced by four million square kilometers. By the end of the 21st century, methane emissions from wetland ecosystems amount to 130–140 Mt CH4/year for the preindustrial and current period increase to 170–200 MtCH4/year. In the aggressive anthropogenic forcing scenario A2, the atmospheric methane concentration grows steadily to ≈3900 ppb. In more moderate scenarios A1B and B1, the methane concentration increases until the mid-21st century, reaching ≈2100–2400 ppb, and then decreases. Methane oxidation in air results in a slight additional growth of the atmospheric concentration of carbon dioxide. Allowance for the interaction between processes in wetland ecosystems and the methane cycle in the IAP RAS CM leads to an additional atmospheric methane increase of 10–20% depending on the anthropogenic forcing scenario and the time. The causes of this additional increase are the temperature dependence of integral methane production and the longer duration of a warm period in the soil. However, the resulting enhancement of the instantaneous greenhouse radiative forcing of atmospheric methane and an increase in the mean surface air temperature are small (globally < 0.1 W/m2 and 0.05 K, respectively).

References

  1. 1.
    P. Friedlingstein, P. Cox, R. Betts, et al., “Climate-Carbon Cycle Feedback Analysis: Results from the C4 MIP Model Intercomparison,” J. Clim. 19, 3337–3353 (2006).CrossRefGoogle Scholar
  2. 2.
    I. I. Mokhov, A. V. Eliseev, and A. A. Karpenko, “Sensitivity of the IAP RAS Global Climatic Model with an Interactive Carbon Cycle to Anthropogenic Forcing,” Dokl. Akad. Nauk 407, 400–404 (2006).Google Scholar
  3. 3.
    I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, and A. A. Karpenko, “Model Estimations of Global Climatic Variations in the 21st Century with Consideration for Different Scenarios of Solar-Activity Variations,” Dokl. Akad. Nauk 411, 250–253 (2006).Google Scholar
  4. 4.
    A. V. Eliseev and I. I. Mokhov, “Carbon Cycle-Climate Feedback Sensitivity to Parameter Changes of a Zero-Dimensional Terrestrial Carbon Cycle Scheme in a Climate Model of Intermediate Complexity,” Theor. Appl. Climatol. 89, 9–24 (2007).CrossRefGoogle Scholar
  5. 5.
    A. V. Eliseev, I. I. Mokhov, and A. A. Karpenko, “Climate and Carbon Cycle Variations in the 20th and 21st Centuries in a Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43, 3–17 (2007) [Izv., Atmos. Ocean. Phys. 43, 1–14 (2007)].Google Scholar
  6. 6.
    E. M. Volodin, “Atmosphere-Ocean General Circulation Model with the Carbon Cycle,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43, 298–313 (2007) [Izv., Atmos. Ocean. Phys. 43, 266–280 (2007)].Google Scholar
  7. 7.
    P. J. Valdes, D. J. Beerling, and C. E. Johnson, “The Ice Age Methane Budget,” Geophys. Rev. Lett. 32, L02704 (2005).Google Scholar
  8. 8.
    Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, Y. Ding, D. J. Griggs, et al. (Cambridge Univ. Press, New York, 2001).Google Scholar
  9. 9.
    C. MacFarling Meure, D. Etheridge, C. Trudinger, et al. “Law Dome CO2, CH4 and N2O Ice Core Records Extended to 2000 Years BP,” Geophys. Res. Lett. 33, L14810 (2006).Google Scholar
  10. 10.
    G. A. Aleksandrov, G. S. Golitsyn, I. I. Mokhov, and V. K. Petukhov, “Global Climate Change and a Regulating Role of Wetlands,” Izv. Akad. Nauk, Ser. Geograf., No. 5, 5–15 (1994).Google Scholar
  11. 11.
    M. Wahlen, “The Global Methane Cycle,” Annu. Rev. Earth Planet. Sci. 21, 407–426 (1993).CrossRefGoogle Scholar
  12. 12.
    K. B. Bartlett and R. C. Harriss, “Review and Assessment of Methane Emissions from Wetlands,” Chemosphere 26, 261–320 (1993).CrossRefGoogle Scholar
  13. 13.
    M. Cao, S. Marshall, and K. Gregson, “Global Carbon Exchange and Methane Emissions from Natural Wetlands: Application of a Process-Based Model,” J. Geophys. Res. D 101, 14399–14414 (1996).CrossRefGoogle Scholar
  14. 14.
    R. Hein, P. J. Crutzen, and M. Heimann, “An Inverse Modeling Approach to Investigate the Global Atmospheric Methane Cycle,” Glob. Biogeochem. Cycles 11, 43–76 (1997).CrossRefGoogle Scholar
  15. 15.
    J. Lelieveld, P. J. Crutzen, and F. J. Dentener, “Changing Concentration, Lifetime and Climate Forcing of Atmospheric Methane,” Tellus B 50, 128–150 (1998).CrossRefGoogle Scholar
  16. 16.
    C. Covey, K. M. Achuta Rao, U. Cubasch, et al., “An Overview of Results from the Coupled Model Intercomparison Project,” Glob. Planet. Change 37, 103–133 (2003).CrossRefGoogle Scholar
  17. 17.
    L. C. Smith, G. M. MacDonald, A. A. Velichko, et al., “Siberian Peatlands a Net Carbon Sink and Global Methane Source Since the Early Holocene,” Science 303, 353–356 (2004).CrossRefGoogle Scholar
  18. 18.
    F. Keppler, J. T. G. Hamilton, M. Braß, and T. Röckmann, “Methane Emissions from Terrestrial Plants under Aerobic Conditions,” Nature 439, 187–191 (2006).CrossRefGoogle Scholar
  19. 19.
    T. J. Osborn and T. M. L. Wigley, “A Simple Model for Estimating Methane Concentration and Lifetime Variations,” Clim. Dyn. 9, 181–193 (1994).CrossRefGoogle Scholar
  20. 20.
    V. K. Petoukhov, I. I. Mokhov, A. V. Eliseev, and V. A. Semenov, The IAP RAS Global Climate Model (Dialogue-MSU, Moscow, 1998).Google Scholar
  21. 21.
    D. Handorf, V. K. Petoukhov, K. Dethloff, et al., “Decadal Climate Variability in a Coupled Atmosphere-Ocean Climate Model of Moderate Complexity,” J. Geophys. Res. D 104, 27 253–27 275 (1999).CrossRefGoogle Scholar
  22. 22.
    I. I. Mokhov, P. F. Demchenko, A. V. Eliseev, et al., “Estimation of Global and Regional Climate Changes during the 19th–21st Centuries on the Basis of the IAP RAS Model with Consideration for Anthropogenic Forcing,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38, 629–642 (2002) [Izv., Atmos. Ocean. Phys. 38, 555–568 (2002)].Google Scholar
  23. 23.
    I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, et al., “Climatic Changes and Their Estimation with the IAP RAS Global Model,” Dokl. Akad. Nauk 402, 243–247 (2005).Google Scholar
  24. 24.
    A. V. Eliseev, I. I. Mokhov, and A. A. Karpenko, “Influence of Direct Sulfate-Aerosol Radiative Forcing on the Results of Numerical Experiments with a Climate Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43, 591–601 (2007) [Izv., Atmos. Ocean. Phys. 43, 544–554 (2007)].Google Scholar
  25. 25.
    M. Claussen, L. Mysak, A. Weaver, et al., “Earth System Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System Models,” Clim. Dyn. 18, 579–586 (2002).CrossRefGoogle Scholar
  26. 26.
    V. Petoukhov, M. Claussen, A. Berger, et al., “EMIC Intercomparison Project (EMIP-CO2): Comparative Analysis of EMIC Simulations of Current Climate and Equilibrium and Transient Reponses to Atmospheric CO2 Doubling,” Clim. Dyn. 25, 363–385 (2005).CrossRefGoogle Scholar
  27. 27.
    V. K. Petukhov, “Zonal Climatic Model of Heat and Moisture Transfer in the Atmosphere over the Ocean,” in Atmospheric Physics and the Problem of Climate, Ed. by G. S. Golitsyn and A. M. Yaglom (Nauka, Moscow, 1980), pp. 8–41 [in Russian].Google Scholar
  28. 28.
    V. A. Kudryavtsev, L. S. Garagulya, K. A. Kondrat’eva, and V. E. Melamed, Principles of PF Forecast (MGU, Moscow, 1974) [in Russian].Google Scholar
  29. 29.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977) [in Russian].Google Scholar
  30. 30.
    E. E. Volodina, L. Bengtsson, and V. N. Lykosov, “Parametrization of Heat and Moisture Transfer in the Snow Cover for Modeling Seasonal Variations in the Hydrological Cycle of Dry Land,” Meterol. Gidrol., No. 5, 5–14 (2000).Google Scholar
  31. 31.
    T. Zhang, “Influence of the Seasonal Snow Cover on the Ground Thermal Regime: An Overview,” Rev. Geophys. 43, RG4002 (2005).Google Scholar
  32. 32.
    A. V. Sosnovskii, “Mathematical Modeling of the Effect of Snow-Cover Thickness on PF Degradation during Warming,” Kriosfera Zemli 10(3), 83–88 (2006).Google Scholar
  33. 33.
    R. E. Dickinson, A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, Bisophere-Atmosphere Transfer Scheme (BATS) (Naval Weather Service, Boulder, 1986), NCAR TN-275-275-STR.Google Scholar
  34. 34.
    D. M. Lawrence and A. G. Slater, “A Projection of Severe Near-Surface PF Degradation during the 21st Century,” Geophys. Rev. Lett. 32, L24401 (2005).Google Scholar
  35. 35.
    C. R. Burn and F. E. Nelson, “Comment on ‘A Projection of Severe Near-Surface PF Degradation during the 21st Century’ by David M. Lawrence and Andrew G. Slater,” Geophys. Rev. Lett. 33, L21503 (2006).Google Scholar
  36. 36.
    M. M. Arzhanov, A. V. Eliseev, P. F. Demchenko, and I. I. Mokhov, “Modeling Variations in the Temperature and Hydrological Regimes of Surface PF from Climatic Data (Reanalysis),” Kriosfera Zemli 11(4) (2007).Google Scholar
  37. 37.
    M. M. Arzhanov, A. V. Eliseev, P. F. Demchenko, et al., “Simulation of Thermal and Hydrological Regimes of Siberian River Watersheds under PF Conditions from Reanalysis Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 44, 86–93 (2008) [Izv., Atmos. Ocean. Phys. 44 (2008)].Google Scholar
  38. 38.
    T. R. Christensen and P. Cox, “Response of Methane Emission from Arctic Tundra to Climatic Change: Results from a Model Simulation,” Tellus B 47, 301–309 (1995).CrossRefGoogle Scholar
  39. 39.
    T. R. Christensen, I. C. Prentice, J. Kaplan, et al., “Methane Flux from Northern Wetlands and Tundra,” Tellus 48, 409–416 (1996).Google Scholar
  40. 40.
    I. I. Mokhov, A. V. Eliseev, and S. N. Denisov, “Model Diagnostics of Variations in Methane Emission by Wetland Ecosystems in the Second Half of the 20th Century with the Use of Reanalysis Data,” Dokl. Akad. Nauk 417, 258–262 (2007).Google Scholar
  41. 41.
    G. J. Whiting and J. P. Chanton, “Primary Production Control of Methane Emission from Wetlands,” Nature 364, 794–795 (1993).CrossRefGoogle Scholar
  42. 42.
    G. Myhre, E. J. Highwood, K. P. Shine, and F. Stordal, “New Estimates of Radiative Forcing Due to Well Mixed Greenhouse Gases,” Geophys. Rev. Lett. 25, 2715–2718 (1998).CrossRefGoogle Scholar
  43. 43.
    G. Marland, T. A. Boden, and R. J. Andres, “Global, Regional, and National CO2 Emissions,” in Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., 2005).Google Scholar
  44. 44.
    R. A. Houghton, “Revised Estimates of the Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use and Land Management 1850–2000,” Tellus B 55, 378–390 (2003).CrossRefGoogle Scholar
  45. 45.
    D. I. Stern and R. K. Kaufmann, “Estimates of Global Anthropogenic Methane Emissions 1860–1993,” Chemosphere 33, 159–176 (1996).CrossRefGoogle Scholar
  46. 46.
    D. F. Ferretti, J. B. Miller, J. W. C. White, et al., “Unexpected Changes to the Global Methane Budget over the Past 2000 Years,” Science 309, 1714–1717 (2005).CrossRefGoogle Scholar
  47. 47.
    L. W. Horowitz, “Past, Present, and Future Concentrations of Tropospheric Ozone and Aerosols: Methodology, Ozone Evaluation, and Sensitivity to Aerosol Wet Deposition,” J. Geophys. Res. 111, D22211 (2006).Google Scholar
  48. 48.
    A. V. Eliseev, M. M. Arzhanov, P. F. Demchenko, et al., “PF Response to SRES A2 Greenhouse Forcing in a Climate Model of Intermediate Complexity,” in Research Activities in Atmospheric and Oceanic Modelling, Ed. by J. Côté (World Climate Research Programme, Geneva, 2007), WMO TD-No. 1397, pp. 09-05–09-06.Google Scholar
  49. 49.
    A. V. Eliseev, I. I. Mokhov, M. M. Arzhanov, et al., Research Activities in Atmospheric and Oceanic Modelling, Ed. by J. Côté (World Climate Research Programme, Geneva, 2007), WMO TD-No. 1397, pp. 09.03–09.04.Google Scholar
  50. 50.
    T. Zhang, R. G. Barry, K. Knowles, et al., “Statistics and Characteristics of PF and Ground-Ice Distribution in the Northern Hemisphere,” Polar Geogr. 23, 132–154 (1999).CrossRefGoogle Scholar
  51. 51.
    S. Houweling, T. Kaminski, F. Dentener, et al., “Inverse Modeling of Methane Sources and Sinks Using the Adjoint of a Global Transport Model,” J. Geophys. Res. 104, 26 137–26 160 (1999).CrossRefGoogle Scholar
  52. 52.
    M. Stendel and J. H. Christensen, “Impact of Global Warming on PF Condition in a Coupled GCM,” Geophys. Rev. Lett. 29, 2002 (2002).CrossRefGoogle Scholar
  53. 53.
    P. F. Demchenko, A. A. Velichko, A. V. Eliseev, et al., “Dependence of PF Conditions on Global Warming: Comparison of Models, Scenarios, and Paleoclimatic Reconstructions,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38, 165–174 (2002) [Izv., Atmos. Ocean. Phys. 38, 143–151 (2002)].Google Scholar
  54. 54.
    P. F. Demchenko, A. V. Eliseev, M. M. Arzhanov, and I. I. Mokhov, “Impact of Global Warming Rate on PF Degradation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 35–43 (2006) [Izv., Atmos. Ocean. Phys. 42, 32–39 (2006)].Google Scholar
  55. 55.
    S. P. Malevskii-Malevich, E. K. Mol’kentin, E. D. Nadezhina, et al., “Estimations of the Possible Thawing Depths of PF Grounds in Russia in the 21st Century,” Meteorol. Gidrol., No. 12, 80–88 (2003).Google Scholar
  56. 56.
    V. P. Meleshko, G. S. Golitsyn, V. A. Govorkova, et al., “Possible Anthropogenic Changes of the Russian Climate in the 21st Century: Estimations with an Ensemble of Climatic Models,” Meterol. Gidrol., No. 4, 38–49 (2004).Google Scholar
  57. 57.
    V. P. Meleshko, V. M. Kattsov, V. A. Govorkova, et al., “Anthropogenic Changes of Climate in the 21st Century in Northern Eurasia,” Meteorol. Gidrol., No. 7, 5–26 (2004).Google Scholar
  58. 58.
    T. V. Pavlova, V. M. Kattsov, E. D. Nadezhina, et al., “Calculation of the Evolution of the Cryosphere in the 20th and 21st Centuries with the Use of Global Climatic Models of the New Generation,” Kriosfera Zemli 11(2), 3–13 (2007).Google Scholar
  59. 59.
    V. P. Nechaev, “Some Relationships between PF and Climatic Parameters and Their Paleogeographic Significance,” in Problems of the Paleogeography of the Pleistocene of Glacial and Periglacial Areas, Ed. by A. A. Velichko and V. P. Grichuk (Nauka, Moscow, 1981), pp. 211–220 [in Russian].Google Scholar
  60. 60.
    O. A. Anisimov, N. I. Shiklomanov, and F. E. Nelson, “Global Warming and Active-Layer Thickness: Results from Transient General Circulation Models,” Glob. Planet. Change 15, 61–77 (1997).CrossRefGoogle Scholar
  61. 61.
    Y. Zhang, W. Chen, S. L. Smith, et al., “Soil Temperature in Canada during the Twentieth Century: Complex Responses to Atmospheric Climate Change,” J. Geophys. Res. 110, D03112 (2005).Google Scholar
  62. 62.
    E. K. Mol’kentin, E. D. Nadezhina, and O. B. Shklyarevich, “Spatial Variability of Model Characteristics of PF Grounds,” Meteorol. Gidrol., No. 8, 89–97 (2001).Google Scholar
  63. 63.
    S. P. Malevsky-Malevich, E. K. Molkentin, E. D. Nadyozhina, and O. B. Shklyarevich, “Numerical Simulation of PF Parameters Distribution in Russia,” Cold Reg. Sci. Tech. 32, 1–11 (2001).CrossRefGoogle Scholar
  64. 64.
    E. Matthews and I. Fung, “Methane Emissions from Natural Wetlands: Global Distribution, Area and Environmental Characteristics of Sources,” Glob. Biogeochem. Cycles 1, 61–86 (1987).CrossRefGoogle Scholar
  65. 65.
    J. O. Kaplan, “Wetlands at the Last Glacial Maximum: Distribution and Methane Emissions,” Geophys. Rev. Lett. 29, 1079 (2002).CrossRefGoogle Scholar
  66. 66.
    Q. Zhuang, J. M. Melillo, D. W. Kicklighter, et al., “Methane Fluxes between Terrestrial Ecosystems and the Atmosphere at Northern High Latitudes during the Past Century: A Retrospective Analysis with a Process-Based Biogeochemistry Model,” Glob. Biogeochem. Cycles 18, GB3010 (2004).Google Scholar
  67. 67.
    N. Gedney, P. M. Cox, and C. Huntingford, “Climate Feedback from Wetland Methane Emissions,” Geophys. Rev. Lett. 31, L20503 (2004).Google Scholar
  68. 68.
    C. Huntingford and P. M. Cox, “An Analogue Model to Derive Additional Climate Change Scenarios from Existing GCM Simulations,” Clim. Dyn 16, 575–586 (2000).CrossRefGoogle Scholar
  69. 69.
    C. E. Johnson, D. S. Stevenson, W. J. Collins, and R. G. Derwent, “Role of Climate Feedback on Methane and Ozone Studied with a Coupled Ocean-Atmosphere-Chemistry Model,” Geophys. Rev. Lett. 28, 1723–1726 (2001).CrossRefGoogle Scholar
  70. 70.
    W. Li, R. E. Dickinson, R. Fu, et al., “Future Precipitation Changes and Their Implications for Tropical Peatlands,” Geophys. Rev. Lett. 34, L01403 (2007).Google Scholar
  71. 71.
    G. J. Whiting and J. P. Chanton, “Greenhouse Carbon Balance of Wetlands: Methane Emission versus Carbon Sequestration,” Tellus B 53, 521–528 (2001).Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • A. V. Eliseev
    • 1
  • I. I. Mokhov
    • 1
  • M. M. Arzhanov
    • 1
  • P. F. Demchenko
    • 1
  • S. N. Denisov
    • 1
  1. 1.Oboukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations