Izvestiya, Atmospheric and Oceanic Physics

, Volume 43, Issue 4, pp 451–460 | Cite as

Structure of the mesoscale variability of the troposphere and stratosphere found from radio refraction measurements via CHAMP satellites



Data of an experiment on radio occultation sounding of the atmosphere with the use of GPS signals were used to obtain global distributions of the variances of mesoscale variations in the refractive index in the troposphere and stratosphere. The experiment was carried out with the CHAMP satellite during the period 2001–2005. Measured vertical profiles were smoothed inside 5–10-km-thick layers centered at different altitudes in the troposphere and stratosphere with the use of second-degree polynomials. Deviations from the smoothed quantities and the corresponding variances were obtained for each profile and averaged for each month during the analyzed interval of the CHAMP experiment. Altitude-longitude-latitude inhomogeneities in the distribution of refractive index variances were analyzed. Altitude and latitude distributions of maxima and minima of refractive index variances depend on altitude and season. Turbulence and acoustic gravity waves can be the causes of small-scale and mesoscale variations in the refractive index of the troposphere and stratosphere. The variances of variations in the refractive index are greater in the regions of tropospheric jet streams and in the zones of near-equatorial deep convection. Atmospheric disturbances increase over mountain systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. J. Fetzer and J. C. Gille, “Gravity Wave Variance in LIMS Temperatures. Part I: Variability and Comparison with Background Winds,” J. Atmos. Sci. 51, 2461–2483 (1994).CrossRefGoogle Scholar
  2. 2.
    S. Eckermann and P. Preusse, “Global Measurements of Stratospheric Mountain Waves from Space,” Science 286(5444), 1534–1537 (1999).CrossRefGoogle Scholar
  3. 3.
    D. Wu and J. Waters, “Gravity-Wave-Scale Temperature Fluctuations Seen by the UARS MLS,” Geophys. Rev. Lett. 23, 3289–3292 (1996).CrossRefGoogle Scholar
  4. 4.
    C. McLandress, M. J. Alexander, and D. Wu, “Microwave Limb Sounder Observations of Gravity Waves in the Stratosphere: A Climatology and Interpretation,” J. Geophys. Res. D 105, 11 947–11 967 (2000).CrossRefGoogle Scholar
  5. 5.
    M. J. Alexander, “Interpretations of Observed Climatological Patterns in Stratospheric Gravity Wave Variance,” J. Geophys. Res. D 103, 8627–8640 (1998).CrossRefGoogle Scholar
  6. 6.
    C. Rocken, R. Athes, M. Exner, et al., “Analysis and Validation of GPS/MET Data in the Neutral Atmosphere,” J. Geophys. Res. D 102, 29 849–29 866 (1997).CrossRefGoogle Scholar
  7. 7.
    R. Ware, C. Rocken, F. Solheim, et al., “GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).CrossRefGoogle Scholar
  8. 8.
    A. S. Gurvich, V. Kan, and O. V. Fedorova, “Stratospheric Radio Occultation Measurements in the GPS-Microlab-1 Satellite System: Phase Fluctuations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 36, 300–308 (2000) [Izv., Atmos. Ocean. Phys. 36, 300–307 (2000)].Google Scholar
  9. 9.
    T. Tsuda, M. Nishida, C. Rocken, and R. H. Ware, “A Global Morphology of Gravity Wave Activity in the Stratosphere Revealed by the GPS Occultation Data (GPS/MET),” J. Geophys. Res. D 105, 7257–7274 (2000).CrossRefGoogle Scholar
  10. 10.
    M. J. Alexander, T. Tsuda, and R. A. Vincent, “Latitudinal Variations Observed in Gravity Waves with Short Vertical Wavelengths,” J. Atmos. Sci. 59, 1394–1404 (2002).CrossRefGoogle Scholar
  11. 11.
    G. D. Nastrom, A. R. Hansen, T. Tsuda, et al., “A Comparison of Gravity Wave Energy Observed by VHF Radar and GPS/MET over Centra12-L North America,” J. Geophys. Res. D 105, 4685–4687 (2000).CrossRefGoogle Scholar
  12. 12.
    N. M. Gavrilov, N. V. Karpova, Ch. Jacobi, and A. N. Gavrilov, “Morphology of Atmospheric Refraction Index Variations at Different Altitudes from GPS/MET Satellite Observations,” J. Atmos. Sol.-Terr. Phys. 66, 427–435 (2004).CrossRefGoogle Scholar
  13. 13.
    N. M. Gavrilov, N. V. Karpova, and Ch. Jacobi, “Global Distributions of the Refraction Index Variances at Different Altitudes in the Atmosphere from GPS/MET Satellite Occultation Data,” Phys. Chem. Earth 29, 241–249 (2004).Google Scholar
  14. 14.
    N. M. Gavrilov and N. V. Karpova, “Global Structure of Atmospheric Mesoscale Variability from Satellite Measurements of Radio-Wave Refraction,” Izv. Akad. Nauk., Fiz. Atmos. Okeana 40, 747–758 (2004) [Izv., Atmos. Ocean. Phys. 40, 668–678 (2004)].Google Scholar
  15. 15.
    T. Tsuda and K. Hocke, “Application of GPS Radio Occultation Data for Studies of Atmospheric Waves in the Middle Atmosphere and Ionosphere,” J. Meteorol. Soc. Jpn. B 82, 419–426 (2004).CrossRefGoogle Scholar
  16. 16.
    M. Venkat Ratnam, G. Tetzlaff, and C. Jacobi, “Global and Seasonal Variations of Atmospheric Gravity Wave Activity Deduced from the Challenging Minisatellite Payload (CHAMP)—GPS Satellite,” J. Atmos. Sci. 61, 1621–1629 (2004).CrossRefGoogle Scholar
  17. 17.
    M. Venkat Ratnam, T. Tsuda, C. Jacobi, and Y. Aoyama, “Enhancement of Gravity Wave Activity Observed During a Major Southern Hemisphere Stratospheric Warming by CHAMP/GPS Measurements,” Geophys. Rev. Lett. 31, L16101, doi: 10.1029/2004GL019789 (2004).CrossRefGoogle Scholar
  18. 18.
    A. De la Torre, T. Tsuda, G. A. Hajj, and J. Wickert, “A Global Distribution of the Stratospheric Gravity Wave Activity from GPS Occultation Profiles with SAC-C and CHAMP,” J. Meteorol. Soc. Jpn. B 82, 407–417 (2004).CrossRefGoogle Scholar
  19. 19.
    J. Wickert, Ch. Reigber, G. Beyerle, et al., “Atmosphere Sounding by GPS Radio Occultation: First Results from CHAMP,” Geophys. Rev. Lett. 28, 3263–3266 (2001).CrossRefGoogle Scholar
  20. 20.
    J. Wickert, G. Beyerle, R. Konig, et al., “GPS Radio Occultation with CHAMP and GRACE: A First Look at a New and Promising Satellite Configuration for Global Atmospheric Sounding,” Ann. Geophys. 23, 653–658 (2005).CrossRefGoogle Scholar
  21. 21.
    J. Wickert, R. Galas, T. Schmidt, et al., “Atmospheric Sounding with CHAMP: GPS Ground Station Data for Occultation Processing,” Phys. Chem. Earth A 29, 267–275 (2004).CrossRefGoogle Scholar
  22. 22.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN 77. The Art of Scientific Computing (Cambridge Univ. Press, Cambridge, 1996).Google Scholar
  23. 23.
    V. V. Vorob’ev and T. G. Krasil’nikova, “Estimating the Accuracy of Retrieving the Atmospheric Refractive Index from Measurements of the Doppler Shifts at the NAVSTAR Frequencies,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 29, 626–633 (1993).Google Scholar
  24. 24.
    A. S. Jensen, M. Lohmann, H. H. Benzon, and A. Nielsen, “Full Spectrum Inversion of Radio Occultation Signal,” Radio. Sci. 38, doi: 10.1029/2002RS002763 (2003).Google Scholar
  25. 25.
    J. Wickert, T. Schmidt, G. Beyrle, et al., “The Radio Occultation Experiment Aboard CHAMP: Operational Data Analysis and Validation of Vertical Atmospheric Profiles,” J. Meteorol. Soc. Jpn. 82(18), 381–395 (2004).CrossRefGoogle Scholar
  26. 26.
    M. E. Gorbunov and L. Kornblueh, “Analysis and Validation of Challenging Minisatellite Payload (CHAMP) Radio Occultation Data,” J. Geophys. Res D 108, doi: 10.1029/2002JD003175 (2003).Google Scholar
  27. 27.
    G. Beyerle, J. Wickert, T. Schmidt, and C. Reigber, “Atmospheric Sounding by Global Navigation Satellite System Radio Occultation: An Analysis of the Negative Refractivity Bias Using CHAMP Observations,” J. Geophys. Res. 109, D01106, doi: 10.1029/2003JD003922 (2004).CrossRefGoogle Scholar
  28. 28.
    M. E. Gorbunov, K. B. Lauritsen, A. Rodin, et al., “Analysis of the CHAMP Experimental Data on Radio-Occultation Sounding of the Earth’s Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 798–813 (2005) [Izv., Atmos. Ocean. Phys. 41, 726–740 (2005)].Google Scholar
  29. 29.
    M. E. Gorbunov and A. S. Gurvich, “Microlab-1 Experiment: Multipath Effects in the Lower Troposphere,” J. Geophys. Res. D 103, 13 819–13 826 (1998).CrossRefGoogle Scholar
  30. 30.
    M. E. Gorbunov and A. S. Gurvich, “Comparative Analysis of Radioholographic Methods of Processing Radio Occultation Data,” Radio Sci. 35, 1025–1034 (2000).CrossRefGoogle Scholar
  31. 31.
    N. M. Gavrilov, S. Fukao, and H. Hashiguchi, “Multi-Beam MU Radar Measurements of Advective Accelerations in the Atmosphere,” Geophys. Rev. Lett. 26, 315–318 (1999).CrossRefGoogle Scholar
  32. 32.
    N. M. Gavrilov, “Parameterization of Momentum and Energy Depositions from Gravity Waves Generated by Tropospheric Hydrodynamic Sources,” Ann. Geophys. 15, 1570–1580 (1997).CrossRefGoogle Scholar
  33. 33.
    M. J. Lighthill, “On Sound Generated Aerodynamically. 1. General Theory,” Proc. R. Soc. London A 211(1107), 564–587 (1952).CrossRefGoogle Scholar
  34. 34.
    R. S. Stein, “Generation of Acoustic and Gravity Waves by Turbulence in an Isothermal Stratified Atmosphere,” Solar Phys. 2, 385–432 (1967).CrossRefGoogle Scholar
  35. 35.
    M. J. Alexander, “A Simulated Spectrum of Convectively Generated Gravity Waves. Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere,” J. Geophys. Res. D 101, 1571–1588 (1996).CrossRefGoogle Scholar
  36. 36.
    S. K. Dhaka, M. K. Yamamoto, Y. Shibagaki, et al., “Equatorial Atmosphere Radar Observations of Short Vertical Wavelength Gravity Waves in the Upper Troposphere and Lower Stratosphere Region Induced by Localized Convection,” Geophys. Rev. Lett. 33, L19805, doi: 10.1029/2006GL027026 (2006).CrossRefGoogle Scholar
  37. 37.
    D. G. Andrews, J. R. Holton, and C. B. Leovy, Middle Atmosphere Dynamics, Int. Geophysical Series, (Academic, 1987), Vol. 40.Google Scholar
  38. 38.
    N. M. Gavrilov and S. Fukao, “Hydrodynamic Tropospheric Wave Sources and Their Role in Gravity Wave Climatology of the Upper Atmosphere from the MU Radar Observations,” J. Atmos. Sol.-Terr. Phys. 63, 931–943 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Fock Institute of PhysicsSt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia

Personalised recommendations