Izvestiya, Atmospheric and Oceanic Physics

, Volume 43, Issue 1, pp 45–51 | Cite as

Assessment of the impact of the planetary scale on the decay of blocking and the use of phase diagrams and enstrophy as a diagnostic

  • A. R. Lupo
  • I. I. Mokhov
  • S. Dostoglou
  • A. R. Kunz
  • J. P. Burkhardt
Article

Abstract

It was shown that abrupt changes in the large-scale structure of atmospheric flows may lead to the rapid decay of blocking. Analysis of phase diagrams made it possible to identify when sharp changes occurred in the dynamics of the system. The connection of these changes to the decay of blocking was estimated for three blocking events in the Southern Hemisphere. In addition to phase diagrams, enstrophy was used as a diagnostic tool for the analysis of blocking events. From the results of this analysis, four scenarios for the decay mechanisms were determined: (i) decay with a lack of synoptic-scale support, (ii) decay with an active role for synoptic processes, and (iii–iv) either of these mechanisms in the interaction with an abrupt change in the character of the planetary-scale flow.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. H. Tsou and P. J. Smith, “The Role of Synoptic/Planetary-Scale Interactions during the Development of a Blocking Anticyclone,” Tellus A 42, 174–193 (1990).CrossRefGoogle Scholar
  2. 2.
    M. S. Tracton, “Predictability and Its Relationship to Scale Interaction Processes in Blocking,” Mon. Weather Rev. 118, 1666–1695 (1990).CrossRefGoogle Scholar
  3. 3.
    A. R. Lupo and P. J. Smith, “Planetary and Synoptic-Scale Interactions during the Life Cycle of a Mid-Latitude Blocking Anticyclone over the North Atlantic,” Tellus A 47, 575–596 (1995).CrossRefGoogle Scholar
  4. 4.
    A. R. Lupo, “A Diagnosis of Two Blocking Events That Occurred Simultaneously over the Mid-Latitude Northern Hemisphere,” Mon. Weather Rev. 125, 1801–1823 (1997).CrossRefGoogle Scholar
  5. 5.
    R. F. C. Marques and V. B. Rao, “A Diagnosis of a Long-Lasting Blocking Event over the Southeast Pacific Ocean,” Mon. Weather Rev. 127, 1761–1776 (1999).CrossRefGoogle Scholar
  6. 6.
    S. J. Colucci, “Planetary-Scale Preconditioning for the Onset of Blocking,” J. Atmos. Sci. 58, 933–942 (2001).CrossRefGoogle Scholar
  7. 7.
    J. P. Burkhardt and A. R. Lupo, “The Planetary and Synoptic-Scale Interactions in a Southeast Pacific Blocking Episode Using PV Diagnostics,” J. Atmos. Sci. 62, 1901–1916 (2005).CrossRefGoogle Scholar
  8. 8.
    A. R. Lupo, A. R. Kunz, and J. P. Burkhardt, “Planetary and Synoptic Scale Interactions in Southeast Pacific Blocking Using Potential Vorticity Diagnostics: More Evidence for the Paucity of Wave-Wave Interactions in Southern Hemisphere Blocking,” in Proceedings of the 21st Conference on Weather Analysis and Forecasting/17th Conference on Numerical Weather Prediction (Washington DC, 2005).Google Scholar
  9. 9.
    A. R. Lupo, I. I. Mokhov, S. Dostoglou, et al., “The Impact of the Planetary Scale on the Decay of Blocking and the Use of Phase Diagrams and Lyapunov Exponents As a Diagnostic,” in Proceedings of the 21st Conference on Weather Analysis and Forecasting/17th Conference on Numerical Weather Prediction (Washington DC, 2005).Google Scholar
  10. 10.
    V. P. Dymnikov and A. N. Filatov, Stability of Large-Scale Atmospheric Processes (Gidrometeoizdat, Leningrad, 1990) [in Russian].Google Scholar
  11. 11.
    E. Kalnay and L. O. Merkine, “A Simple Mechanism for Blocking,” J. Atmos. Sci. 38, 2077–2091 (1981).CrossRefGoogle Scholar
  12. 12.
    J. S. Frederiksen, “A Unified Three-Dimensional Instability Theory of the Onset of Blocking and Cyclogenesis,” J. Atmos. Sci. 39, 969–982 (1982).Google Scholar
  13. 13.
    G. J. Shutts, “The Propagation of Eddies in Diffluent Jet Streams: Eddy Vorticity Forcing of Blocking Flow Fields,” Q. J. R. Meteorol. Soc. 109, 737–761 (1983).Google Scholar
  14. 14.
    S. L. Mullen, “The Local Balances of Vorticity and Heat for Blocking Anticylcones in a Spectral General Circulation Model,” J. Atmos. Sci. 43, 1406–1441 (1986).CrossRefGoogle Scholar
  15. 15.
    S. L. Mullen, “Transient Eddy Forcing and Blocking Flows,” J. Atmos. Sci. 44, 3–22 (1987).CrossRefGoogle Scholar
  16. 16.
    K. Haines and A. J. Holland, “Vacillation Cycles and Blocking in a Channel,” Q. J. R. Meteorol. Soc. 124, 873–897 (1998).CrossRefGoogle Scholar
  17. 17.
    S. J. Colucci and D. P. Baumhefner, “Numerical Prediction of the Onset of Blocking: A Case Study with Forecast Ensembles,” Mon. Weather Rev. 126, 773–784 (1998).CrossRefGoogle Scholar
  18. 18.
    E. Kalnay, et al., “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Am. Meteorol. Soc. 77, 437–471 (1996).CrossRefGoogle Scholar
  19. 19.
    A. R. Lupo and L. F. Bosart, “An Analysis of a Relatively Rare Case of Continental Blocking,” Q. J. R. Meteorol. Soc. 125, 107–138 (1999).CrossRefGoogle Scholar
  20. 20.
    A. R. Lupo and P. J. Smith, “Climatological Features of Blocking Anticyclones in the Northern Hemisphere,” Tellus A 47, 439–456 (1995).CrossRefGoogle Scholar
  21. 21.
    I. I. Mokhov, “Climate Changes: Analysis of Global Cycles,” Ann. Geophys. 11(Suppl.), 334 (1993).Google Scholar
  22. 22.
    I. I. Mokhov, Doctoral Dissertation in Mathematics and Physics (IFA RAN, Moscow, 1995).Google Scholar
  23. 23.
    I. I. Mokhov and A. V. Eliseev, “Changes in the Characteristics of the Quasi-Bieenial Oscillation of Zonal Wind and Temperature in the Equatorial Lower Stratosphere,” Izv. Akad. Nauk, Fiz. Atm. Okeana 34, 327–336 (1998) [Izv., Atmos. Ocean. Phys. 34, 291–299 (1998)].Google Scholar
  24. 24.
    I. I. Mokhov, A. V. Elieev, and D. V. Khvorost’yanov, “Evolution of the Characteristics of Interannual Climate Variability Associated with the El Niño and La Niña Phenomena,” Izv. Akad. Nauk, Fiz. Atm. Okeana 36, 741–751 (2000) [Izv., Atmos. Ocean. Phys. 36, 681–690 (2000)].Google Scholar
  25. 25.
    I. I. Mokhov, D. V. Khvorostyanov, and A. V. Eliseev, “Decadal and Longer-Term Changes in ENSO Characteristics,” Int. J. Climatol. 2, 401–414 (2004).CrossRefGoogle Scholar
  26. 26.
    A. V. Federov, S. L. Harper, S. G. Philander, et al., “How Predictable Is El Niño?,” Bull. Am. Meteorol. Soc. 84, 911–920 (2003).CrossRefGoogle Scholar
  27. 27.
    L. Bengtsson, “Numerical Prediction of Atmospheric Blocking—A Case Study,” Tellus 33, 19–42 (1981).Google Scholar
  28. 28.
    A. R. Hansen, “Observational Characteristics of Atmospheric Planetary Waves with Bimodal Amplitude Distributions,” Adv. Geophys. 29, 101–134 (1986).Google Scholar
  29. 29.
    R. Shapiro, “Smoothing, Filtering, and Boundary Effects,” Rev. Geophys. 8, 737–761 (1970).Google Scholar
  30. 30.
    E. N. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmos. Sci. 20, 130–141 (1963).CrossRefGoogle Scholar
  31. 31.
    J. M. Nese, J. A. Dutton, and R. Wells, “Calculated Attractor Dimensions for Low-Order Spectral Models,” J. Atmos. Sci. 44, 1950–1972 (1987).CrossRefGoogle Scholar
  32. 32.
    A. R. Hansen and A. Sutera, “Planetary Wave Amplitude Bimodality in the Southern Hemisphere,” J. Atmos. Sci. 45, 3771–3783 (1988).CrossRefGoogle Scholar
  33. 33.
    I. I. Mokhov, Diagnostics of the Structure of the Climatic System (Gidrometeoizdat, St. Petersburg, 1993) [in Russian].Google Scholar
  34. 34.
    P. Lynch, “Resonant Rossby Wave Triads and the Swinging Spring,” Bull. Am. Meteorol. Soc. 84, 605–616 (2003).CrossRefGoogle Scholar
  35. 35.
    J. G. Charney and J. G. DeVore, “Multiple Flow Equilibria in the Atmosphere and Blocking,” J. Atmos. Sci. 36, 1205–1216 (1979).CrossRefGoogle Scholar
  36. 36.
    S. Yoden, “Bifurcation Properties of Quasi-Geostrophic, Barotropic, Low-Order Model with Topography,” J. meteorol. Soc. Jpn. 63, 535–546 (1985).Google Scholar
  37. 37.
    G. Nitsche, C. Kooperberg, and J. M. Wallace, “Is There Evidence of Multiple Equilibria in Planetary-Wave Amplitude?,” J. Atmos. Sci. 51, 314–322 (1994).CrossRefGoogle Scholar
  38. 38.
    G. M. Agayan and I. I. Mokhov, “Quasi-Stationary Fall-Season Regimes of the Atmosphere in the Northern Hemisphere during the PGEP,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 25, 1150–1156 (1989).Google Scholar
  39. 39.
    V. P. Dymnikov, E. V. Kazantsev, and V. V. Kharin, “Information Entropy and Local Lyapunov Exponents of a Barotropic Atmospheric Circulation,” Izv. Akad. Nauk, Fiz. Atm. Okeana 28, 425–432 (1992).Google Scholar
  40. 40.
    D. Ruelle, “Characteristic Exponents and Invariant Manifolds in Hilbert Space,” Ann. Math. 115, 243–290 (1982).CrossRefGoogle Scholar
  41. 41.
    P. Constantin, C. Foias, and R. Temam, “Attractors Representing Turbulent Flows,” Mem. Am. Math. Soc. 53 (1985).Google Scholar
  42. 42.
    V. P. Dymnikov and E. V. Kazantsev, “Structure of an Attractor Generated by the System of Equations of a Barotropic Atmosphere,” Izv. Akad. Nauk, Fiz. Atm. Okeana 29, 581–595 (1993).Google Scholar
  43. 43.
    J. M. Wiedenmann, A. R. Lupo, I. I. Mokhov, and E. A. Tikhonova, “The Climatology of Blocking Anticyclones of the Northern and Southern Hemispheres: Block Intensity As a Diagnostic,” J. Clim. 15 (2002).Google Scholar
  44. 44.
    V. P. Dymnikov and A. N. Filatov, “Some Problems of Mathematical Climate Theory” Izv. Akad. Nauk, Fiz. Atm. Okeana 31, 293–303 (1995).Google Scholar
  45. 45.
    H. Lejenas and H. Okland, “Characteristics of Northern Hemisphere Blocking As Determined from a Long Time Series of Observational Data,” Tellus A 35, 350–362 (1983).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. R. Lupo
    • 1
  • I. I. Mokhov
    • 2
  • S. Dostoglou
    • 1
  • A. R. Kunz
    • 1
  • J. P. Burkhardt
    • 1
  1. 1.University of Missouri-ColumbiaColumbiaUSA
  2. 2.Oboukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations