Izvestiya, Atmospheric and Oceanic Physics

, Volume 42, Issue 6, pp 709–714 | Cite as

Comparison between refraction angles measured in the Microlab-1 experiment and calculated on the basis of an atmospheric general circulation model

  • A. S. Gurvich
  • M. E. Gorbunov
  • L. Kornblueh


The differences between the refraction angles measured and calculated for the reanalyses of the European Centre for Medium-Range Weather Forecasts were statistically analyzed on the basis of 64 radio occultation events recorded by the Microlab-1 satellite. It is shown that, for minimum ray heights below 20 km, the main contribution to the differences is made by spatial refractive-index fluctuations neglected by the model. The power spectral density of these fluctuations is mainly concentrated within the vertical wave-number range 0.5–10 rad/km. For heights above 30 km, the deviations are mainly determined by ionospheric disturbances and may vary several times during changes of the site and time of observations. This suggests that the results of satellite radio-occultation sounding of the neutral atmosphere can be used as an indirect quantitative estimate of local discrepancies between the actual field of the refractive index and its values calculated on the basis of a hydrodynamic atmospheric general circulation model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ware, M. Exner, D. Feng, et al., “GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results,” Bull. Am. Meteorol. Soc. 77, 10–40 (1996).CrossRefGoogle Scholar
  2. 2.
    E. R. Kursinski, G. A. Hajj, S. S. Leroy, and B. Herman, “The GPS Radio Occultation Technique,” Terr. Atmos. Ocean. Sci. 11, 53–114 (2000).Google Scholar
  3. 3.
    C. Rocken, R. Anthes, M. Exner, et al., “Analysis and Validation of GPS/MET Data in the Neutral Atmosphere,” J. Geophys. Res. D 102, 29 849–29 866 (1997).CrossRefGoogle Scholar
  4. 4.
    K. Steiner, G. Kirchengast, and H. P. Lasreiter, “Inversion, Error Analysis, and Validation of GPS/MET Data,” Ann. Geophys. 17, 122–138 (1999).CrossRefGoogle Scholar
  5. 5.
    M. E. Gorbunov and L. Kornblueh, “Analysis and Validation of GPS/MET Radio Occultation Data,” J. Geophys. Res. D 106, 17-161–17-169 (2001).CrossRefGoogle Scholar
  6. 6.
    J. Wickert, C. Reigber, and G. Beyerle, “Atmosphere Sounding by GPS Radio Occultation: First Results from CHAMP,” Geophys. Rev. Lett. 28, 3263–3266 (2001).CrossRefGoogle Scholar
  7. 7.
    M. E. Gorbunov and L. Kornblueh, “Analysis and Validation of Challenging Minisatellite Payload (CHAMP) Radio Occultation Data,” J. Geophys. Res. D 108, 4584, doi: 10.1029/2002JD003175 (2003).CrossRefGoogle Scholar
  8. 8.
    M. E. Gorbunov, K. V. Lauritsen, A. Rodin, et al., “Analysis of the CHAMP Experimental Data on Radio-Occultation Sounding of the Earth’s Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 798–813 (2005) [Izv., Atmos. Ocean. Phys. 41, 726–740 (2005)].Google Scholar
  9. 9.
    V. V. Vorob’ev and T. G. Krasil’nikova, “Estimating the Accuracy of Retrieving the Atmospheric Refractive Index from Measurements of the Doppler Shift at the NAVSTAR Frequencies,” 29, 626–632 (1993).Google Scholar
  10. 10.
    S. Syndergaard, “On the Ionospheric Calibration in GPS Radio Occultation Measurements,” Radio Sci. 35, 865–883 (2000).CrossRefGoogle Scholar
  11. 11.
    M. E. Gorbunov, “Ionospheric Correction and Statistical Optimization of Radio Occultation Data,” Radio Sci. 37, 17-1–17-9, doi: 10.1029/2000RS002370 (2002).Google Scholar
  12. 12.
    V. V. Vorob’ev and V. Kan, “Background Fluctuations in the Ionosphere during GPS-Microlab-1 Radio-Occultation Experiment,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 42, 511–523 (1999).Google Scholar
  13. 13.
    S. M. Uppala, P. W. Kallberg, A. J. Simmons, et al., “The ERA-40 Re-Analysis,” Q. J. R. Meteorol. Soc., No. 131, 2961–3012, doi: 10.1256/qj.04.176 (2005).Google Scholar
  14. 14.
    M. E. Gorbunov, “Canonical Transform Method for Processing GPS Radio Occultation Data in Lower Troposphere,” Radio Sci. 37, 9-1–9-10, doi:10.1029/2000RS002592 (2002).Google Scholar
  15. 15.
    M. E. Gorbunov and K. B. Lauritsen, “Canonical Transform Methods for Radio Occultation Data,” Scientific Report No. 02-10 (Danish Meteorological Institute, Copenhagen, 2002); http://www.dmi.dk/dmi/Sr02-10.pdf.Google Scholar
  16. 16.
    A. S. Jensen, M. S. Lohmann, H.-H. Benzon, and A. S. Nielsen, “Full Spectrum Inversion of Radio Occultation Signals,” Radio Sci. 38, 6-1–6-15, doi:10.1029/2002RS002763 (2003).CrossRefGoogle Scholar
  17. 17.
    M. E. Gorbunov, H.-H. Benzon, A. S. Jensen, et al., “Comparative Analysis of Radio Occultation Processing Approaches Based on Fourier Integral Operators,” Radio Sci. 39, 6004, doi: 10.1029/2003RS002916 (2004).Google Scholar
  18. 18.
    A. S. Jensen, M. S. Lohmann, A. S. Nielsen, and H.-H. Benzon, “Geometrical Optics Phase Matching of Radio Occultation Signals,” Radio Sci. 39, 3009, doi: 10.1029/2003RS002899 (2004).CrossRefGoogle Scholar
  19. 19.
    M. E. Gorbunov and K. B. Lauritsen, “Analysis of Wave Fields by Fourier Integral Operators and Its Application for Radio Occultations,” Radio Sci. 39, 4010, doi: 10.1029/2003RS002971 (2004).Google Scholar
  20. 20.
    M. E. Gorbunov, “Analysis of the Data of Radio-Occultation Sounding of the Earth’s Atmosphere with the Use of the Theory of Fourier Integral Operators,” Elektromagn. Volny Elektron. Sist., No. 9, 9–10 (2004).Google Scholar
  21. 21.
    A. M. Yaglom, Correlation Theory of Stationary Random Functions (Gidrometeoizdat, Leningrad, 1981) [in Russian].Google Scholar
  22. 22.
    J. S. Bendat and A. G. Piersol, Engineering Applications of Correlation and Spectral Analysis (Mir, Moscow, 1983; Wiley, New York, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. S. Gurvich
    • 1
  • M. E. Gorbunov
    • 1
  • L. Kornblueh
    • 2
  1. 1.Oboukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations