Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transitions

  • V. V. Zhakhovskii
  • K. Nishihara
  • S. I. Anisimov
  • N. A. Inogamov
Condensed Matter

Abstract

The expansion of an instantly heated planar layer of condensed matter into a vacuum is investigated. It is shown that, as the result of a phase transition, a liquid shell characterized by a constant density and filled with matter in a two-phase state is formed in a rarefaction wave. By measuring the velocity of the shell and its density and mass, it is possible to obtain important information about the behavior of matter in the near-critical region of the phase diagram, where both experimental and theoretical investigations are complicated. Problems associated with the kinetics of the phase transition in rarefaction waves are investigated in detail. This investigation is based on a direct computer simulation of the dynamics of atoms and is free from any assumptions usually used in phenomenologically describing the fluctuation kinetics of the liquid-vapor transition.

PACS numbers

47.40.−x 62.50.+p 64.70.Fx 65.70.+y 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, et al., Proc. SPIE 3343, 46 (1998).ADSGoogle Scholar
  2. 2.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, Appl. Surf. Sci. 127–129, 755 (1998).Google Scholar
  3. 3.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, et al., Phys. Rev. Lett. 81, 224 (1998).ADSGoogle Scholar
  4. 4.
    S. I. Anisimov, Zh. Éksp. Teor. Fiz. 54, 339 (1968) [Sov. Phys. JETP 27, 182 (1968)].Google Scholar
  5. 5.
    S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, Effect of High-Power Radiation on Metals (Nauka, Moscow, 1970).Google Scholar
  6. 6.
    S. I. Anisimov and B. Rethfeld, Proc. SPIE 3093, 192 (1997).ADSGoogle Scholar
  7. 7.
    N. A. Inogamov, Yu. V. Petrov, S. I. Anisimov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 284 (1999) [JETP Lett. 69, 310 (1999)].Google Scholar
  8. 8.
    S. I. Anisimov, N. A. Inogamov, A. M. Oparin, et al., Appl. Phys. A 69, 617 (1999).CrossRefADSGoogle Scholar
  9. 9.
    N. A. Inogamov, S. I. Anisimov, and B. Rethfeld, Zh. Éksp. Teor. Fiz. 115, 2091 (1999) [JETP 88, 1143 (1999)].Google Scholar
  10. 10.
    V. V. Zhakhovskii and S. I. Anisimov, Zh. Éksp. Teor. Fiz. 111, 1328 (1997) [JETP 84, 734 (1997)].Google Scholar
  11. 11.
    S. I. Anisimov, D. O. Dunikov, S. P. Malyshenko, and V. V. Zhakhovskii, J. Chem. Phys. 110, 8722 (1999).CrossRefADSGoogle Scholar
  12. 12.
    F. H. Ree, J. Chem. Phys. 73, 5401 (1980).ADSGoogle Scholar
  13. 13.
    B. Smit, J. Chem. Phys. 96, 8639 (1992).CrossRefADSGoogle Scholar
  14. 14.
    S. Toxvaerd, Phys. Rev. E 58, 704 (1998).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • V. V. Zhakhovskii
    • 1
    • 2
  • K. Nishihara
    • 2
  • S. I. Anisimov
    • 3
    • 4
  • N. A. Inogamov
    • 3
  1. 1.Joint Institute of High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Laser EngineeringOsaka University SuitaOsakaJapan
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  4. 4.Department of Particle PhysicsWeizman Institute of ScienceRehovotIsrael

Personalised recommendations