Intermittence phenomena in the Burgers equation involving thermal noise

  • I. V. Kolokolov
Plasma, Gases

Abstract

Leading terms of the asymptotic behavior of the pair and higher order correlation functions for finite times and large distances have been calculated for the Burgers equation involving thermal noise. It is shown that an intermittence phenomenon occurs, whereby certain correlation functions are much greater than their reducible parts.

PACS numbers

47.27. Ak 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Frisch, Turbulence. The Legacy of A. N. Kolmogorov (Cambridge University, Cambridge, 1995).Google Scholar
  2. 2.
    M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. E 52, 4924 (1995).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    K. Gawedzki and A. Kupiainen, Phys. Rev. Lett. 75, 3834 (1995).ADSGoogle Scholar
  4. 4.
    A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1982).Google Scholar
  5. 5.
    V. V. Lebedev, cond-mat/9904430.Google Scholar
  6. 6.
    D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A 16, 732 (1977).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    V. V. Lebedev and V. S. L’vov, Pis’ma Zh. Éksp. Teor. Fiz. 58, 301 (1993) [JETP Lett. 58, 310 (1993)].Google Scholar
  8. 8.
    Ya. B. Zel’dovich and A. D. Myshkis, Elements of Mathematical Physics (Nauka, Moscow, 1973).Google Scholar
  9. 9.
    M. Bauer and D. Bernard, chao-dyn/9812018 v2.Google Scholar
  10. 10.
    S. N. Gurbatov, A. N. Malakhov, and A. I. Saichev, Non-linear Random Waves in Nondispersion Media (Nauka, Moscow, 1990).Google Scholar
  11. 11.
    E. Weinan, K. Khanin, A. Mazel, and Y. Sinai, Phys. Rev. Lett. 78, 1904 (1997).ADSGoogle Scholar
  12. 12.
    E. Balkovsky, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 78, 1452 (1997).CrossRefADSGoogle Scholar
  13. 13.
    V. L’vov and G. Falkovich, Phys. Rev. A 46, 4762 (1992).ADSGoogle Scholar
  14. 14.
    E. I. Kats and V. V. Lebedev, Dynamics of Liquid Crystals (Nauka, Moscow, 1988).Google Scholar
  15. 15.
    I. M. Lifshits, Usp. Fiz. Nauk 83, 617 (1964) [Sov. Phys. Usp. 7, 571 (1965)].MATHGoogle Scholar
  16. 16.
    L. N. Lipatov, Zh. Éksp. Teor. Fiz. 72, 411 (1977) [Sov. Phys. JETP 45, 216 (1977)].MathSciNetGoogle Scholar
  17. 17.
    V. Falko and K. Efetov, Europhys. Lett. 32, 627 (1995).Google Scholar
  18. 18.
    G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).ADSGoogle Scholar
  19. 19.
    V. Gurarie and A. Migdal, Phys. Rev. E 54, 4908 (1996).CrossRefADSGoogle Scholar
  20. 20.
    M. Chertkov, Phys. Rev. E 55, 2722 (1997).CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    E. Balkovsky and G. Falkovich, Phys. Rev. E 57, 1231 (1998).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    E. Balkovsky and V. Lebedev, Phys. Rev. E 58, 5776 (1998).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    B. A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. B 51, 5480 (1995).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • I. V. Kolokolov
    • 1
  1. 1.Budker Institute of Nuclear Physics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations