Dynamical correlations of two-dimensional vortex-like defects

  • V. V. Lebedev
Condensed Matter

Abstract

High-order dynamical correlations of defects (quantum vortices, disclinations, etc.) in thin films are examined by starting from the Langevin equation for the defect motion. It is demonstrated that the dynamical correlation functions F2n of the vorticity or disclinicity behave as F2ny2/r4n, where r is the characteristic scale and y is the renormalized fugacity. Therefore below the Berezinskii-Kosterlitz-Thouless transition temperature the F2n are characterized by anomalous scaling exponents. The behavior differs strongly from the normal law F2nF2n obeyed by equal-time correlation functions; the unequal-time correlation functions appear to be much larger. The phenomenon resembles intermittency in turbulence.

PACS numbers

68.55.Ln 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Berezinskii, Zh. Éksp. Teor. Fiz. 59, 907 (1970) [Sov. Phys. JETP 32, 493 (1971)]; Zh. Éksp. Teor. Fiz. 61, 1144 (1971) [Sov. Phys. JETP 34, 610 (1972)].Google Scholar
  2. 2.
    J. M. Kosterlitz and D. J. Thouless, J. Phys. C 5, L124 (1972); 6, 1181 (1973).CrossRefADSGoogle Scholar
  3. 3.
    J. M. Kosterlitz and D. J. Thouless, in Progress in Low Temperature Physics, Vol. VII B, edited by D. F. Brewer, North-Holland, Amsterdam (1978), p. 373.Google Scholar
  4. 4.
    D. R. Nelson, in Fundamental Problems in Statistical Mechanics, Vol. V, edited by E. G. D. Cohen, North-Holland, New York (1980), p. 53.Google Scholar
  5. 5.
    D. R. Nelson, in Phase Transitions and Critical Phenomena, Vol. 7, edited by C. Domb and J. L. Lebowitz, Academic Press, London (1983), p. 1.Google Scholar
  6. 6.
    P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).CrossRefADSGoogle Scholar
  7. 7.
    Z. Gulacsi and M. Gulacsi, Adv. Phys. 47, 1 (1998).CrossRefADSGoogle Scholar
  8. 8.
    D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977); B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978); B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 519 (1978); A. P. Young, Phys. Rev. B 19, 1855 (1979); D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).CrossRefADSGoogle Scholar
  9. 9.
    K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988).CrossRefADSGoogle Scholar
  10. 10.
    G. Blatter, M. V. Feigel’man, V. B. Geshkenbein et al., Rev. Mod. Phys. 66, 1125 (1994).CrossRefADSGoogle Scholar
  11. 11.
    A. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia, Phys. Rev. Lett. 40, 783 (1978); Phys. Rev. B 21, 1806 (1980).CrossRefADSGoogle Scholar
  12. 12.
    A. Zippelius, B. I. Halperin, and D. R. Nelson, Phys. Rev. B 22, 2514 (1980); R. Bruinsma, B. I. Halperin, and A. Zippelius, Phys. Rev. B 25, 579 (1982).CrossRefADSGoogle Scholar
  13. 13.
    J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).CrossRefADSGoogle Scholar
  14. 14.
    J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16, 1217 (1977).ADSGoogle Scholar
  15. 15.
    L. P. Kadanoff, Ann. Phys. 120, 39 (1979); L. P. Kadanoff and A. B. Zisook, Nucl. Phys. B 180, 61 (1981).Google Scholar
  16. 16.
    H. E. Hall and W. F. Vinen, Proc. R. Soc. London, Ser. A 238, 215 (1956); W. F. Vinen, in Progress in Low Temperature Physics, Vol. III, North-Holland, Amsterdam (1961), p. 1; P. Nozieres and W. F. Vinen, Philos. Mag. 14, 667 (1966).ADSGoogle Scholar
  17. 17.
    D. L. Huber, Phys. Rev. B 26, 3758 (1982).ADSGoogle Scholar
  18. 18.
    M. Doi, J. Phys. A: Math. Gen. 9, 1465, 1479 (1976).ADSGoogle Scholar
  19. 19.
    V. V. Lebedev, Phys. Rev. E, submitted.Google Scholar
  20. 20.
    U. Frisch, Turbulence: the Legacy of A. N. Kolmogorov, Cambridge University Press, New York (1995).Google Scholar
  21. 21.
    R. Kraichnan, Phys. Fluids 10, 1417 (1967); R. Kraichnan, J. Fluid Mech. 47, 525 (1971).Google Scholar
  22. 22.
    I. Lifshits, S. Gredeskul, and A. Pastur, Introduction to the theory of disordered systems, Wiley Interscience, New York (1988).Google Scholar
  23. 23.
    K. B. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University Press (1997).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1999

Authors and Affiliations

  • V. V. Lebedev
    • 1
    • 2
  1. 1.Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of Physics of Complex Systems, Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations