Decay of an electronic vortex of a collisionless shock wave as a possible mechanism of a “Coulomb explosion”

  • A. B. Gordeev
  • T. V. Loseva
Plasma, Gases

Abstract

A new mechanism of a “Coulomb explosion,” where ions are accelerated by the electric field separating charges at the magnetic Debye radius rBB/4πene, is proposed on the basis of a nonquasineutral model of electronic vortices in a magnetic field. It is shown by means of numerical calculations that in the process of acceleration of the ions a collisionless shock wave, whose front has an effective width of the order of δ∼rB, determined by the breakdown of quasineutrality, is formed in a time of the order of ωpi−1, where ωpi is the ion plasma frequency. The origin of such explosive dynamics is the formation of “holes” in the electron density at characteristic times of the order of ωpe−1pe is the electronic plasma frequency) as a result of the generation of electronic vorticity by the Weibel instability of an electromagnetic wave. Calculations for a laser pulse with intensity J∼6×1018 W/cm2 show that the ions expand in the radial direction with velocities up to 3.5×108 cm/s.

PACS numbers

52.35.Tc 52.40.Nk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Esarey et al., IEEE Trans. Plasma Sci. 24, 252 (1996).CrossRefGoogle Scholar
  2. 2.
    M. Tabak, J. Hammer, M. E. Glinsky et al., Phys. Plasmas 1, 1626 (1994).CrossRefADSGoogle Scholar
  3. 3.
    K. Krushelnick, A. Ting, C. I. Moore et al., Phys. Rev. Lett. 78, 4047 (1997).CrossRefADSGoogle Scholar
  4. 4.
    N. H. Burnett and G. D. Enright, IEEE J. Quantum Electron. 26, 1797 (1990).CrossRefADSGoogle Scholar
  5. 5.
    G. S. Sarkisov, V. Yu. Bychenkov, V. T. Tikhonchuk et al., JETP Lett. 66, 828 (1997); G. S. Sarkisov, V. Yu. Bychenkov, V. N. Novikov, and V. T. Tikhonchuk, Phys. Rev. E 59, 7042 (1999).CrossRefADSGoogle Scholar
  6. 6.
    A. V. Gordeev and S. V. Kevchenko, JETP Lett. 67, 482 (1998).CrossRefADSGoogle Scholar
  7. 7.
    G. S. Sarkisov, V. Yu. Bychenkov, and V. Yu. Tikhonchuk, JETP Lett. 69, 20 (1999).CrossRefADSGoogle Scholar
  8. 8.
    E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).CrossRefADSGoogle Scholar
  9. 9.
    S. V. Bulanov, M. Lontano, T. Zh. Esirkepov et al., Phys. Rev. Lett. 76, 3562 (1996).CrossRefADSGoogle Scholar
  10. 10.
    G. A. Askar’yan, S. V. Bulanov, F. Pegoraro, and A. M. Pukhov, JETP Lett. 60, 251 (1994).ADSGoogle Scholar
  11. 11.
    A. V. Gordeev, A. S. Kingsep, and L. I. Rudakov, Phys. Rep. 243, 215 (1994).CrossRefADSGoogle Scholar
  12. 12.
    R. Z. Sagdeev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Vol. 4 (Pergamon Press, New York, 1959) [Russian original, Soviet Academy of Sciences Press, Moscow, 1958, p. 384).Google Scholar
  13. 13.
    R. Z. Sagdeev, in Reviews of Plasma Physics, pp. 23–91, edited by M. A. Leontovich, (Consultants Bureau, New York, 1966) [Russian original, Atomizdat, Moscow, 1964].Google Scholar
  14. 14.
    V. V. Krasnosel’skikh, Zh. Éksp. Teor. Fiz. 89, 498 (1985) [Sov. Phys. JETP 62, 282 (1985)].ADSGoogle Scholar
  15. 15.
    K. Krushelnick, E. L. Clark, Z. Najmudin et al., Phys. Rev. Lett. 83, 737 (1999).CrossRefADSGoogle Scholar
  16. 16.
    A. V. Gordeev, S. V. Levchenko, Electromagnetic Waves and Electronic System, 3, 25 (1998).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1999

Authors and Affiliations

  • A. B. Gordeev
    • 1
  • T. V. Loseva
    • 2
  1. 1.Russian Science Center “Kurchatov Institute”MoscowRussia
  2. 2.Institute of the Dynamics of GeospheresRussian Academy of SciencesMoscowRussia

Personalised recommendations