Advertisement

Efficient nonlinear-optical frequency conversion in periodic media in the presence of diffraction of the pump and harmonic fields

  • V. A. Belyakov
Nonlinear Dynamics

Abstract

It has been predicted by Shelton and Shen [Phys. Rev. A 5, 1867 (1972)] and observed by Kajikawa et al. [Jpn. J. Appl. Phys. Lett. 31, L679 (1992)] and Yamada et al. [Appl. Phys. B 60, 485 (1995)] that the efficiency of nonlinear-optical frequency conversion increases significantly in a nonlinear periodic medium and, accordingly, the intensity of the generated harmonic increases as the fourth power of the sample thickness, as opposed to the square law observed in homogeneous media. In this paper it is shown that the same enhancement of the efficiency of nonlinear-optical frequency conversion in a nonlinear periodic medium can be achieved using an ordinary pump wave in the form of a plane wave when both the pump wave and the harmonics are diffracted by the periodic structure of the nonlinear medium. The phenomenon is analyzed quantitatively in the example of second-harmonic generation.

PACS numbers

42.65.Ky 42.70.Nq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Byer, Nonlinear Opt. 7, 235 (1999).Google Scholar
  2. 2.
    A. S. Chirkin and V. V. Volkov, J. Russ. Laser Res. 19, 409 (1998).Google Scholar
  3. 3.
    A. V. Andreev, O. A. Andreeva, A. V. Balakin et al., Kvantovaya Élektron. 28, 75 (1999).Google Scholar
  4. 4.
    N. Bloembergen and A. J. Sievers, Appl. Phys. Lett. 17, 483 (1970).CrossRefGoogle Scholar
  5. 5.
    J. P. van Der Ziel and M. Ilegems, Appl. Phys. Lett. 28, 437 (1976).ADSGoogle Scholar
  6. 6.
    J. W. Shelton and Y. R. Shen, Phys. Rev. A 5, 1867 (1972).CrossRefADSGoogle Scholar
  7. 7.
    V. A. Belyakov and N. V. Shipov, Phys. Lett. A 86, 94 (1981).CrossRefADSGoogle Scholar
  8. 8.
    V. A. Belyakov and N. V. Shipov, Zh. Éksp. Teor. Fiz. 82, 1159 (1982) [Sov. Phys. JETP 55, 674 (1982)].Google Scholar
  9. 9.
    S. V. Shiyanovskii, Ukr. Fiz. Zh. (Russ. Ed.) 27, 361 (1982).Google Scholar
  10. 10.
    S. Nakagawa, N. Yamada, N. Mikoshiba et al., Appl. Phys. Lett. 66, 2159 (1995).CrossRefADSGoogle Scholar
  11. 11.
    M. Scalora, M. J. Bloemer, A. S. Manka et al., Phys. Rev. A 56, 3166 (1997).CrossRefADSGoogle Scholar
  12. 12.
    J. W. Haus, R. Viswanathan, M. Scalora et al., Phys. Rev. A 57, 2120 (1998).CrossRefADSGoogle Scholar
  13. 13.
    V. A. Belyakov and N. V. Shipov, Pis’ma Zh. Tekh. Fiz. 9, 22 (1983) [Sov. Tech. Phys. Lett. 9, 9 (1983)].Google Scholar
  14. 14.
    K. Kajikawa, T. Isozaki, H. Takezoe et al., Jpn. J. Appl. Phys., Part 2 31, L679 (1992).CrossRefADSGoogle Scholar
  15. 15.
    T. Furukawa, T. Yamada, K. Ishikawa et al., Appl. Phys. B 60, 485 (1995).CrossRefGoogle Scholar
  16. 16.
    J. Yoo, S. Choi, H. Hoshi et al., Jpn. J. Appl. Phys., Part 2 36, L1168 (1997).Google Scholar
  17. 17.
    M. Copic and I. Drevensek-Olenik, Liq. Cryst. 21, 233 (1996).Google Scholar
  18. 18.
    I. Drevensek-Olenik and M. Copic, Phys. Rev. E 56, 581 (1997).ADSGoogle Scholar
  19. 19.
    D. Chung et al., 1999 (in press).Google Scholar
  20. 20.
    V. A. Belyakov, Diffraction Optics of Complex-Structured Periodic Media, Springer-Verlag, Berlin-New York (1992).Google Scholar
  21. 21.
    S. V. Shiyanovskii, SPIE Proc. 2795, 2 (1996).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1999

Authors and Affiliations

  • V. A. Belyakov
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations