On propagation of short pulses in strong dispersion managed optical lines

  • V. E. Zakharov
  • S. V. Manakov
Nonlinear Dynamics


We show that the propagation of short pulses in optical lines with strong dispersion management is described by an integrable Hamiltonian system. The leading nonlinear effect is the formation of a collective dispersion which is a result of the interaction of all pulses propagating along the line.

PACS numbers

42.65.Tg 42.81.Dp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Hasegawa and V. Tappert, Appl. Phys. Lett. 23, 142 (1973).Google Scholar
  2. 2.
    V. E. Zakharov and A. B. Shabat, Zh. Éksp. Teor. Fiz. 60, 136 (1971) [Sov. Phys. JETP 33, 33 (1971)].Google Scholar
  3. 3.
    A. Hasegawa and Y. Kodama, Opt. Lett. 15, 1443 (1990); Phys. Rev. Lett. 66, 161 (1991).ADSGoogle Scholar
  4. 4.
    V. E. Zakharov and S. Wabnitz (eds.), Optical Solitons. Theoretical Challenges and Industrial Perspectives, Springer, EDP Sciences (1999).Google Scholar
  5. 5.
    I. Gabitov and S. Turitzin, Opt. Lett. 21, 327 (1996); JETP Lett. 63, 814 (1996).ADSGoogle Scholar
  6. 6.
    M. Ablovitz and G. Biondini, Opt. Lett. 23, 1668 (1998).ADSGoogle Scholar
  7. 7.
    V. E. Zakharov, “Propagation of optical pulses in nonlinear systems with varying dispersion,” Proceedings of the International School on Optical Solitons, Le Houches (1998).Google Scholar
  8. 8.
    I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vols. 1–3, Academic Press, New York (1964–1967) [Russian original, Fizmatgiz, Moscow (1958–1959).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1999

Authors and Affiliations

  • V. E. Zakharov
    • 1
  • S. V. Manakov
    • 1
  1. 1.Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations