Advertisement

Contribution to the theory of spin relaxation at finite temperatures in the odd-filling quantum Hall effect regime

  • S. M. Dikman
  • S. V. Iordanskii
Condensed Matter

Abstract

Spin relaxation in a two-dimensional electron gas (2D EG) is treated as the establishment of equilibrium in a gas of spin excitons as a result of processes that change the number of spin excitons. Coalescence is the dominant channel above a temperature of the order of 1 K. The coalescence of excitons can occurr as a result of spin-orbit and Coulomb interactions in the 2D EG. The rate of coalescence falls exponentially at low temperatures. The relaxation time is calculated, and the critical temperature below which the main annihilation process becomes that due to the exciton-phonon interaction is determined.

PACS numbers

73.40.Hm 71.10.Ca 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Bar-Ad and I. Bar-Joseph, Phys. Rev. Lett. 68, 349 (1992).CrossRefADSGoogle Scholar
  2. 2.
    G. Müller, L. Weiss, A. V. Khaetskii et al., Phys. Rev. B 45, 3932 (1992).CrossRefADSGoogle Scholar
  3. 3.
    V. Srinivas, Y. J. Chen, and C. E. Wood, Phys. Rev. B 47, 10907 (1993).Google Scholar
  4. 4.
    V. E. Zhitomirskii, V. E. Kirpichev, A. I. Filin et al., JETP Lett. 58, 439 (1993).ADSGoogle Scholar
  5. 5.
    G. Bastard, Phys. Rev. B 46, 4253 (1992).CrossRefADSGoogle Scholar
  6. 6.
    A. V. Khaetskii, Phys. Rev. B 45, 13777 (1992).Google Scholar
  7. 7.
    S. M. Dikman and S. V. Iordanskii, JETP Lett. 63, 50 (1996).CrossRefADSGoogle Scholar
  8. 8.
    S. M. Dikman and S. V. Iordanskii, Zh. Éksp. Teor. Fiz. 110, 238 (1996) [JETP 83, 128 (1996)].Google Scholar
  9. 9.
    Yu. A. Bychkov, S. V. Iordanskii, and G. M. Éliashberg, JETP Lett. 33, 143 (1981).ADSGoogle Scholar
  10. 10.
    C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 (1984).CrossRefADSGoogle Scholar
  11. 11.
    I. V. Lerner and Yu. E. Lozovik, Zh. Éksp. Teor. Fiz. 80, 1488 (1981) [Sov. Phys. JETP 53, 763 (1981)].Google Scholar
  12. 12.
    Yu. A. Bychkov and É. I. Rashba, JETP Lett. 39, 66 (1984).Google Scholar
  13. 13.
    M. I. D’yakonov and V. Yu. Kachorovskii, Fiz. Tekh. Poluprovodn. 20, 178 (1986) [Sov. Phys. Semicond. 20, 110 (1986)].Google Scholar
  14. 14.
    I. V. Lerner and Yu. E. Lozovik, Zh. Éksp. Teor. Fiz. 78, 1167 (1980) [Sov. Phys. JETP 51, 588 (1980)].Google Scholar
  15. 15.
    S. Dickmann, Physica B 263–264, 202 (1999).Google Scholar
  16. 16.
    A. B. Dzyubenko and Yu. E. Lozovik, J. Phys. A: Math. Gen. 24, 415 (1991).CrossRefADSGoogle Scholar
  17. 17.
    M. Rasolt, B. I. Halperin, and D. Vanderbilt, Phys. Rev. Lett. 57, 126 (1986).CrossRefADSGoogle Scholar
  18. 18.
    Yu. A. Bychkov and S. V. Iordanskii, Fiz. Tverd. Tela (Leningrad) 29, 2442 (1987) [Sov. Phys. Solid State 29, 1405 (1987)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1999

Authors and Affiliations

  • S. M. Dikman
    • 1
  • S. V. Iordanskii
    • 2
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussia
  2. 2.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations