Advertisement

Ultrahigh-energy cosmic rays and stable H dibaryon

  • N. I. Kochelev
Gravity, Astrophysics

Abstract

It is shown that an instanton-induced interaction between quarks produces a very deeply bound H dibaryon with mass below 2M N , viz., M H =1718 MeV. Therefore the H dibaryon is predicted to be a stable particle. The reaction of photodisintegration of the H dibaryon to 2Λ in the course of its motion in the cosmic microwave background will result in a new possible cutoff in the cosmic-ray spectrum. This provides an explanation for the ultrahigh-energy cosmic ray events observed above the GZK cutoff as being the result of the strong interaction of high-energy H dibaryons from cosmic rays with nuclei in the Earth’s atmosphere.

PACS numbers

14.20.Pt 13.85.Tp 98.70.Sa 98.70.Vc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Greisen, Phys. Rev. Lett. 16, 748 (1966); G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966).CrossRefADSGoogle Scholar
  2. 2.
    N. N. Efimov et al., Proceedings of the International Symposium on Astrophysical Aspects of the Most Energetic Cosmic Rays, edited by M. Nagano and F. Takahara, World Scientific, Singapore (1991), p. 20; T. A. Egorov et al., Proceedings of the Tokyo Workshop on Techniques for the Study of Extremely High Energy Cosmic Rays, edited by M. Nagano, ICRR, Univ. of Tokyo (1993); B. N. Afanasiev, Proceedings of the International Symposium on Extremely High Energy Cosmic Rays; Astrophysics and Future Observations, edited by M. Nagano ICRR, Univ. of Tokyo (1996); M. A. Lawrence, R. J. O. Reid, and A. A. Watson, J. Phys. G Nucl. Part. Phys. 17, 733 (1991); D. J. Bird et al., Phys. Rev. Lett. 71, 3401 (1993); Astrophys. J. 424, 491 (1994); 441 144 (1995); N. Hayashida et al., Phys. Rev. Lett. 73, 3491 (1994); for recent reviews see P. Bhattacharjee and G. Sigl, http: //xxx.lanl.gov/abs/astro-ph/9811011; V. Berezinsky, http://xxx.lanl.gov/abs/astro-ph/9811268.Google Scholar
  3. 3.
    V. A. Kuzmin and I. I. Tkachev, http://xxx.lanl.gov/abs/hep-ph/9903542.
  4. 4.
    T. Schäfer and E. V. Shuryak, Rev. Mod. Phys. 70, 1323 (1998).CrossRefGoogle Scholar
  5. 5.
    R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977); 38, 1617 (E) (1977).ADSMathSciNetGoogle Scholar
  6. 6.
    S. V. Bashinsky and R. L. Jaffe, Nucl. Phys. A 625, 167 (1997).ADSGoogle Scholar
  7. 7.
    A. E. Dorokhov and N. I. Kochelev, JINR preprint, E2-86-847 (1986); A. E. Dorokhov, N. I. Kochelev and Yu. A. Zubov, Fiz. Élem. Chastits. At. Yadra 23, 1192 (1992) [Sov. J. Part. Nucl. 23, 522 (1992)].Google Scholar
  8. 8.
    S. Takeuchi and M. Oka, Phys. Rev. Lett. 66, 1271 (1991).CrossRefADSGoogle Scholar
  9. 9.
    N. I. Kochelev, Yad. Fiz. 41, 456 (1985) [Sov. J. Nucl. Phys. 41 291 (1985)]; A. E. Dorokhov and N. I. Kochelev, JINR preprint, E2-86-355 (1986); Yad. Fiz. 52, 214 (1990) [Sov. J.Nucl. Phys. 52, 135 (1990)].Google Scholar
  10. 10.
    E. V. Shuryak and J. L. Rosner, Phys. Lett. B 218, 72 (1989).ADSGoogle Scholar
  11. 11.
    M. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B 422, 427 (1998); R. Rapp, T. Schafer, E. V. Shuryak, and M. Velkovsky, Phys. Rev. Lett. 81, 53 (1998).Google Scholar
  12. 12.
    G. ’t Hooft, Phys. Rev. D 14, 3432 (1976).ADSGoogle Scholar
  13. 13.
    B. A. Shahbazian, T. A. Volokhovskay, V. N. Emelyanenko, and A. S. Martynov, Phys. Lett. B 316, 593 (1993); S. Ahmad et al., Nucl. Phys. A 590 477c (1995); J. Belz et al., Phys. Rev. D 53, R3487 (1996).ADSGoogle Scholar
  14. 14.
    R. L. Stotzer et al., Phys. Rev. Lett. 78, 274 (1997).CrossRefGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1999

Authors and Affiliations

  • N. I. Kochelev
    • 1
  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubna, Moscow RegionRussia

Personalised recommendations