Advertisement

Quasi-long-range order in the random anisotropy Heisenberg model

  • D. E. Feldman
Condensed Matter

Abstract

The random field and random anisotropy N-vector models are studied with the functional renormalization group in 4−ε dimensions. The random anisotropy Heisenberg (N=3) model has a phase with an infinite correlation length at low temperatures and weak disorder. The correlation function of the magnetization obeys a power law 〈m(r1)m(r2)〉∼¦r1r2¦− 0.62ε. The magnetic susceptibility diverges at low fields as χ∼H−1+0.15ε. In the random field N-vector model the correlation length is finite at arbitrarily weak disorder for any N>3.

PACS numbers

75.10.Jm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399 (1975).CrossRefADSGoogle Scholar
  2. 2.
    R. Harris, M. Plischke, and M. J. Zuckermann, Phys. Rev. Lett. 31, 160 (1973).ADSGoogle Scholar
  3. 3.
    T. Bellini, N. A. Clark, and D. W. Schaefer, Phys. Rev. Lett. 74, 2740 (1995).CrossRefADSGoogle Scholar
  4. 4.
    S. V. Fridrikh and E. M. Terentjev, Phys. Rev. Lett. 79, 4661 (1997).CrossRefADSGoogle Scholar
  5. 5.
    K. Matsumoto, J. V. Porto, L. Pollak et al., Phys. Rev. Lett. 79, 253 (1997).ADSGoogle Scholar
  6. 6.
    G. Blatter, M. V. Feigelman, V. B. Geshkenbein et al., Rev. Mod. Phys. 66, 1125 (1994).CrossRefADSGoogle Scholar
  7. 7.
    A. I. Larkin, Zh. Éksp. Teor. Fiz. 58, 1466 (1970) [Sov. Phys. JETP 31, 784 (1970)].Google Scholar
  8. 8.
    R. A. Pelcovits, E. Pytte, and J. Rudnik, Phys. Rev. Lett. 40, 476 (1978).CrossRefADSGoogle Scholar
  9. 9.
    U. Yaron, P. L. Gammel, D. A. Huse et al., Phys. Rev. Lett. 73, 2748 (1994).CrossRefADSGoogle Scholar
  10. 10.
    S. E. Korshunov, Phys. Rev. B 48, 3969 (1993); T. Giamarchi and P. Le Doussal, Phys. Rev. B 52, 1242 (1995).ADSGoogle Scholar
  11. 11.
    M. J. P. Gingras and D. A. Huse, Phys. Rev. B 53, 15193 (1996).Google Scholar
  12. 12.
    L. Balents and D. S. Fisher, Phys. Rev. B 48, 5949 (1993).CrossRefADSGoogle Scholar
  13. 13.
    M. Mezard and G. Parisi, J. Phys. A 23, L1229 (1990); J. Phys. (France) 1, 809 (1991).Google Scholar
  14. 14.
    D. E. Feldman, JETP Lett. 65, 114 (1997); Phys. Rev. B 56, 3167 (1997).ADSGoogle Scholar
  15. 15.
    T. Emig and T. Nattermann, Phys. Rev. Lett. 81, 1469 (1998).ADSGoogle Scholar
  16. 16.
    L. Radzihovsky and J. Toner, http://xxx.lanl.gov/abs/cond-mat/9811105.
  17. 17.
    B. Barbara, M. Coauch, and B. Dieny, Europhys. Lett. 3, 1129 (1987).ADSGoogle Scholar
  18. 18.
    R. Fisch, Phys. Rev. B 57, 269 (1998); 58, 5684 (1998); J. Chakrabaty, Phys. Rev. Lett. 81, 385 (1998).CrossRefADSGoogle Scholar
  19. 19.
    P. Lacour-Gayet and G. Toulouse, J. Phys. (France) 35, 425 (1974); S. L. Ginzburg, Zh. Éksp. Teor. Fiz. 80, 244 (1981) [Sov. Phys. JETP 53, 124 (1981)]; A. Khurana, A. Jagannathan, and J. M. Kosterlitz, Nucl. Phys. B 240, 1 (1984); M. V. Feigelman and M. V. Tsodyks, Zh. Éksp. Teor. Fiz. 91, 955 (1986) [Sov. Phys. JETP 64, 562 (1986)].Google Scholar
  20. 20.
    A. M. Polyakov, Phys. Lett. B 59, 79 (1975); Gauge Fields and Strings, Harwood Academic Publishers, Chur, 1987.ADSMathSciNetGoogle Scholar
  21. 21.
    D. S. Fisher, Phys. Rev. B 31, 7233 (1985).ADSGoogle Scholar
  22. 22.
    M. Schwartz and A. Soffer, Phys. Rev. Lett. 55, 2499 (1985).ADSGoogle Scholar
  23. 23.
    A. Aharony and E. Pytte, Phys. Rev. Lett. 45, 1583 (1980).ADSGoogle Scholar
  24. 24.
    Y. Y. Goldshmidt, Nucl. Phys. B 225, 123 (1983).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1999

Authors and Affiliations

  • D. E. Feldman
    • 1
  1. 1.Landau Institute of Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussia

Personalised recommendations