Role of the curvature of atomic layers in electron field emission from graphitic nanostructured carbon

  • A. N. Obraztsov
  • A. P. Volkov
  • I. Yu. Pavlovskii
  • A. L. Chuvilin
  • N. A. Rudina
  • V. L. Kuznetsov
Condensed Matter


Layers of oriented carbon nanotubes and nanometer-size plate-shaped graphite crystallites are obtained by chemical vapor deposition in a glow-discharge plasma. A structural-morphological investigation of a carbon material consisting of nanotubes and nanocrystallites is performed, and the field-emission properties of the material are also investigated. It is shown that electron field emission is observed in an electric field with average intensity equal to or greater than 1.5 V/μm. The low fields giving rise to electron emission can be explained by a decrease in the electronic work function as a result of the curvature of the atomic layers of graphitic carbon.

PACS numbers

79.70.+q 73.61.Tm 81.15.Gh 36.40.−c 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. I. Man, Yu. A. Malinovskii, and S. A. Semiletov, Kristallografiya 35, 1029 (1990) [Sov. Phys. Crystallogr. 35, 608 (1990)].Google Scholar
  2. 2.
    M. Terrones, W. K. Hsu, J. P. Hare et al., Philos. Trans. R. Soc. London, Ser. A 354, 2025 (1996).ADSGoogle Scholar
  3. 3.
    Z. Ya. Kosakovskaya, L. A. Chernozatonskii, and E. A. Fedorov, JETP Lett. 56, 26 (1992).ADSGoogle Scholar
  4. 4.
    A. G. Rinzler, J. H. Hafner, P. Nikolaev et al., Science 269, 1550 (1995).ADSGoogle Scholar
  5. 5.
    W. A. de Heer, A. Châtelain, and D. Ugarte, Science 270, 1179 (1995).ADSGoogle Scholar
  6. 6.
    Y. Saito, K. Hamaguchi, K. Hata et al., Nature (London) 389, 555 (1997).CrossRefGoogle Scholar
  7. 7.
    M. I. Elinson (Ed.), Cold Cathodes [in Russian], Sov. Radio, Moscow, 1974.Google Scholar
  8. 8.
    G. N. Fursei, D. V. Glazanov, L. M. Baskin et al., Mikroelektronika 26, 89 (1997).Google Scholar
  9. 9.
    I. Yu. Pavlovskii and A. N. Obraztsov, Prib. Tekh. Éksp. No. 1, 152 (1998).Google Scholar
  10. 10.
    R. E. Shroder, R. J. Nemanich, and J. T. Glass, Phys. Rev. B 41, 3738 (1990).CrossRefADSGoogle Scholar
  11. 11.
    J. M. Holden, P. Zhou, X.-X. Bi et al., Chin. Phys. Lasers 220, 186 (1994).Google Scholar
  12. 12.
    N. V. Khokhryakov, S. S. Savinskii, and J. M. Molina, JETP Lett. 62, 617 (1995).ADSGoogle Scholar
  13. 13.
    A. N. Obraztsov, A. P. Volkov, and I. Yu. Pavlovskii, JETP Lett. 68, 59 (1998).CrossRefADSGoogle Scholar
  14. 14.
    A. N. Obraztsov, I. Yu. Pavlovsky, A. P. Volkov et al., in Proceedings of the 9th European Conference DIAMOND’98, Abstract No. 15.514 (full paper accepted for publication in Diamond Related Mater.).Google Scholar
  15. 15.
    J.-M. Bonard, T. Stockli, F. Maier et al., Phys. Rev. Lett. 81, 1441 (1998).CrossRefADSGoogle Scholar
  16. 16.
    H. Hiura, T. W. Ebbeesen, J. Fujita et al., Nature (London) 367, 148 (1994).CrossRefADSGoogle Scholar
  17. 17.
    V. L. Kuznetsov, A. L. Chuvilin, Yu. V. Butenko et al., Chem. Phys. Lett. 289, 353 (1998).CrossRefGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1999

Authors and Affiliations

  • A. N. Obraztsov
    • 1
  • A. P. Volkov
    • 1
  • I. Yu. Pavlovskii
    • 1
  • A. L. Chuvilin
    • 2
  • N. A. Rudina
    • 2
  • V. L. Kuznetsov
    • 2
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.G. K. Boreskov Institute of CatalysisRussian Academy of SciencesNovosibirskRussia

Personalised recommendations