Expansion of matter heated by an ultrashort laser pulse

  • N. A. Inogamov
  • Yu. V. Petrov
  • S. I. Anisimov
  • A. M. Oparin
  • N. V. Shaposhnikov
  • D. von der Linde
  • J. Meyer-ter-Vehn
Plasma, Gases

Abstract

Recent experiments have utilizied high-power subpicosecond laser pulses to effect the ultrafast heating of a condensed material to temperatures far above the critical temperature. Using optical diagnostics it was established that a complicated density profile with sharp gradients, differing substantially from an ordinary rarefaction wave, forms in the expanding heated matter. The present letter is devoted to the analysis of the expansion of matter under the conditions of the experiments reported by D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, Appl. Surf. Science 109/110, 1 (1996); K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al., Proc. Soc. Photo-Opt. Instum. Eng. 3343, 46 (1998); and, K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al., Phys. Rev. Lett. 81, 224 (1998). It is shown that if the unloading adiabat passes through the two-phase region, a thin liquid shell filled with low-density two-phase matter forms in the expanding material. The shell moves with a constant velocity. The velocity in the two-phase material is a linear function of the coordinate (flow with uniform deformation), and the density is independent of the coordinate and decreases with time as t−1.

PACS numbers

52.50.Jm 65.70.+y 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Anisimov, Zh. Éksp. Teor. Fiz. 54, 339 (1968) [Sov. Phys. JETP 27, 182 (1968)].Google Scholar
  2. 2.
    A. A. Bubnov and M. N. Libenson, Inzh.-Fiz. Zh. 25, 125 (1973).Google Scholar
  3. 3.
    S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. B. Khodyko, The Effect of High-Power Radiation on Metals, Nauka, Moscow, 1970.Google Scholar
  4. 4.
    D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, Appl. Surf. Sci. 109/110, 1 (1996).Google Scholar
  5. 5.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al., Proc. SPIE 3343, 46 (1998).ADSGoogle Scholar
  6. 6.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al., Phys. Rev. Lett. 81, 224 (1998).ADSGoogle Scholar
  7. 7.
    S. I. Anisimov, A. M. Prokhorov, and V. E. Fortov, Usp. Fiz. Nauk 142, 395 (1984) [Sov. Phys. Usp. 27, 181 (1984)].Google Scholar
  8. 8.
    A. V. Bushman and V. E. Fortov, Usp. Fiz. Nauk 140, 177 (1983) [Sov. Phys. Usp. 26, 465 (1983)].Google Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed., Pergamon Press, New York, 1987 [Russian original, Nauka, Moscow, 1986].Google Scholar
  10. 10.
    J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley, New York, 1954, Chap. 5.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1999

Authors and Affiliations

  • N. A. Inogamov
    • 1
  • Yu. V. Petrov
    • 1
  • S. I. Anisimov
    • 1
  • A. M. Oparin
    • 2
  • N. V. Shaposhnikov
    • 3
  • D. von der Linde
    • 4
  • J. Meyer-ter-Vehn
    • 5
  1. 1.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussia
  2. 2.Institute of Computer-Aided DesignRussian Academy of SciencesMoscowRussia
  3. 3.Institute of High TemperaturesRussian Academy of SciencesMoscowRussia
  4. 4.Institut für Laser-und PlasmaphysikUniversität-GHS-EssenEssenGermany
  5. 5.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations