Advertisement

Rotational quantum friction in superfluids: Radiation from object rotating in superfluid vacuum

  • A. Calogeracos
  • G. E. Volovik
Gravity, Astrophysics

Abstract

The friction experienced by a body rotating in a superfluid liquid at T=0 is discussed. The effect is analogous to the amplification of electromagnetic radiation and spontaneous emission by a body or black hole rotating in the quantum vacuum, first discussed by Zel’dovich and Starobinsky. The friction is caused by the interaction of the part of the liquid which is rigidly connected with the rotating body and thus represents a comoving detector, with the “Minkowski” superfluid vacuum outside the body. The emission process is the quantum tunneling of quasiparticles from the detector to the ergoregion, where the energy of quasiparticles is negative in the rotating frame. This quantum rotational friction caused by the emission of quasiparticles is estimated for phonons and rotons in superfluid 4He and for Bogoliubov fermions in superfluid 3He.

PACS numbers

03.65.−w 67.40.−w 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. G. Unruh, Phys. Rev. D 14, 870 (1976).ADSGoogle Scholar
  2. 2.
    J. Audretsch and R. Müller, Phys. Rev. A 50, 1755 (1994).ADSGoogle Scholar
  3. 3.
    P. C. W. Davies, T. Dray, and C. A. Manogue, Phys. Rev. D 53, 4382 (1996).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
    Ya. B. Zel’dovich, JETP Lett. 14, 180, (1971).ADSGoogle Scholar
  7. 7.
    J. D. Bekenstein and M. Schiffer, Phys. Rev. D 58, 064014 (1998).Google Scholar
  8. 8.
    A. A. Starobinskii, Zh. Éksp. Teor. Fiz. 64, 48 (1973) [Sov. Phys. JETP 37, 28 (1973)].Google Scholar
  9. 9.
    Ya. B. Zel’dovich, Zh. Éksp. Teor. Fiz. 62, 2076 (1971) [Sov. Phys. JETP 35, 1085 (1971)].Google Scholar
  10. 10.
    G. Kang, Phys. Rev. D 55, 7563 (1997).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).CrossRefADSGoogle Scholar
  12. 12.
    M. Visser, Class. Quantum Grav. 15, 1767 (1998).CrossRefADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    Ü. Parts, V. M. H. Ruutu, J. H. Koivuniemi et al., Europhys. Lett. 31, 449 (1995).Google Scholar
  14. 14.
    M. Kardar and R. Golestanian, http://xxx.lanl.gov/abs/cond-mat/9711071.
  15. 15.
    T. A. Jacobson and G. E. Volovik, Phys. Rev. D 58, 064021 (1998); JETP Lett. 68, 874 (1998).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1999

Authors and Affiliations

  • A. Calogeracos
    • 1
    • 2
  • G. E. Volovik
    • 1
    • 3
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyFinland
  2. 2.NCA Research AssociatesAthensGreece
  3. 3.L. D. Landau Institute of Theoretical PhysicsMoscowRussia

Personalised recommendations