Advertisement

The de Haas-van Alphen effect in quasi-two-dimensional materials

  • P. D. Grigoriev
  • I. D. Vagner
Condensed Matter

Abstract

We calculate the amplitude of magnetization oscillations for a quasi-two-dimensional electron system. In the two-dimensional case the behavior of this amplitude as a function of magnetic field and temperature differ completely from the conventional Lifshitz-Kosevich formula valid for three-dimensional metals. Previously only the ideal two-dimensional case has been considered, and the difference of the shape of the Fermi surface from cylindrical has not been taken into account. We obtain the general formula for the envelope of magnetization oscillations as a function of magnetic field, temperature, and the strength of the warping of the Fermi surface. This problem is important because of the great amount of interest in heterostructures and quasi-two-dimensional organic metals which has arisen in recent years.

PACS numbers

71.18.+y 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Schoenberg, Proc. R. Soc. London, Ser. A 170, 341 (1939).ADSGoogle Scholar
  2. 2.
    W. J. de Haas and P. M. van Alphen, Leiden Commun. A 212, 215 (1930); Proc. R. Acad. Sci. Amsterdam 33, 1106 (1930).Google Scholar
  3. 3.
    L. M. Lifshitz and A. M. Kosevich, Zh. Éksp. Teor. Fiz. 29, 730 (1956) [Sov. Phys. JETP 2, 636 (1956)].Google Scholar
  4. 4.
    S. A. J. Wiegers, M. Specht, L. P. Levy et al., Phys. Rev. Lett. 79, 3238 (1997).CrossRefADSGoogle Scholar
  5. 5.
    N. Harrison, A. House, I. Deckers et al., Phys. Rev. B 52, 5584 (1995).CrossRefADSGoogle Scholar
  6. 6.
    P. S. Sandhu, G. J. Athas, J. S. Brooks et al., Surf. Sci. 361–362, 913 (1996).Google Scholar
  7. 7.
    V. N. Laukhin, A. Audouard, H. Rakoto et al., Physica B 211, 282 (1995).CrossRefADSGoogle Scholar
  8. 8.
    K. Jauregui, V. I. Marchenko, and I. D. Vagner, Phys. Rev. B 41, R12922 (1990).Google Scholar
  9. 9.
    K. Jauregui, W. Joss, V. I. Marchenko, and I. D. Vagner, in High Magnetic Fields in Semiconductor Physics III, edited by H. K. V. Lotsch, Vol. 101 of Springer Series in Solid-State Sciences, Springer-Verlag, Berlin, 1992, p. 668.Google Scholar
  10. 10.
    N. Harrison, R. Bogaerts, S. J. Blundell et al., Phys. Rev. B 54, 9977 (1996).CrossRefADSGoogle Scholar
  11. 11.
    N. Toyota, E. W. Fenton, T. Sasaki, and M. Tachiki, Solid State Commun. 72, 859 (1989).CrossRefGoogle Scholar
  12. 12.
    J. Singleton, F. L. Pratt, M. Doporto et al., Phys. Rev. Lett. 68, 2500 (1992).CrossRefADSGoogle Scholar
  13. 13.
    T. Sasaki and N. Toyota, Phys. Rev. B 49, 10120 (1994).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1999

Authors and Affiliations

  • P. D. Grigoriev
    • 1
  • I. D. Vagner
    • 2
  1. 1.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussia
  2. 2.Grenoble High Magnetic Field Laboratory MPI-FRF and CNRS, BP 166Grenoble Cedex 09France

Personalised recommendations