Advertisement

Quadrupolar forces and aggregation of nematic droplets

  • I. E. Dzyaloshinskii
  • E. I. Kats
  • J. Lajzerowicz
Condensed Matter

Abstract

The electrostatic quadrupolar interaction between spherical nematic droplets in an isotropic (and nonconducting) liquid is calculated. It is found to have an anisotropic form U q ∝1/R5, where R is the distance between droplets, with repulsion for droplets having parallel orientation of the quadrupole moments and attraction at oblique angles around the orthogonal orientation. In an external magnetic field aligning the orientations of the quadrupole moments, a competition of the quadrupolar repulsion and van der Waals attraction (UvdW∝ 1/R6) leads to a specific spatial organization of droplets which is in fact often reported in experimental observations (see the monograph by P. Drzaic, Liquid Crystal Dispersions, World Scientific, Singapore (1995) and references cited therein).

PACS numbers

61.30.−v 41.20.Cv 47.55.Dz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Drzaic, Liquid Crystal Dispersions, World Scientific, Singapore (1995).Google Scholar
  2. 2.
    P. G. de Gennes, The Physics of Liquid Crystals, Clarendon Press, Oxford (1974).Google Scholar
  3. 3.
    A. I. Kitaigorodsky, Molecular Crystals and Molecules, Academic Press, New York (1973).Google Scholar
  4. 4.
    D. Myers, Surfaces, Interfaces, and Colloids, VCH Publishers, New York (1991).Google Scholar
  5. 5.
    J. N. Israelashvili, Intermolecular and Surface Forces, Academic Press, Orlando (1985).Google Scholar
  6. 6.
    G. E. Volovik and O. D. Lavrentovich, Zh. Éksp. Teor. Fiz. 85, 1997 (1983) [Sov. Phys. JETP 58, 1159 (1983)].Google Scholar
  7. 7.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Pergamon Press, New York (1974).Google Scholar
  8. 8.
    S. Chandrasekhar, Liquid Crystals, Cambridge Univ. Press, New York (1977).Google Scholar
  9. 9.
    E. Dubois-Violette and O. Parodi, J. Phys. (Paris), Colloq. 30, C4–57 (1969).Google Scholar
  10. 10.
    I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10, 165 (1961).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    I. E. Dzyaloshinskii, S. G. Dmitriev, and E. I. Kats, Zh. Éksp. Teor. Fiz. 68, 2335 (1975) [Sov. Phys. JETP 41, 1167 (1975).Google Scholar
  12. 12.
    W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersion, Cambridge University Press, Cambridge (1989).Google Scholar
  13. 13.
    P. Poulin, V. Cabuil, and D. A. Weitz, Phys. Rev. Lett. 79, 4862 (1997).ADSGoogle Scholar
  14. 14.
    Y. Mao, M. E. Cates, and H. N. W. Lekkerkerker, Phys. Rev. Lett. 75, 4548 (1995).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1998

Authors and Affiliations

  • I. E. Dzyaloshinskii
    • 1
  • E. I. Kats
    • 2
    • 3
  • J. Lajzerowicz
    • 3
  1. 1.Deptartment of PhysicsUniversity of CaliforniaIrvineUSA
  2. 2.Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Laboratoire de Spectrometrie PhysiqueUniv. Joseph-Fourier Grenoble 1France

Personalised recommendations