Lagrangian instanton for the Kraichnan model

  • E. Balkovsky
  • V. Lebedev
Methods of Theoretical Physics

Abstract

We consider high-order correlation functions of the passive scalar in the Kraichnan model. Using the instanton formalism, we find the scaling exponents ζn of the structure functions Sn for n≫1 under the additional condition dζ2≫1 (where d is the dimensionality of space).At n<nc (where nc=dζ2/[2(2−ζ2)]) the exponents are ζn=(ζ 2/4)(2nn2/nc), while at n>nc they are n-independent: ζ n2nc/4. We also estimate the n-dependent factors in Sn.

PACS numbers

47.27.Ak 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Kolmogorov, C. R. Acad. Sci. URSS 30, 301 (1941).MATHGoogle Scholar
  2. 2.
    U. Frisch, Turbulence: the Legacy of A. N. Kolmogorov, Cambridge University Press, New York, 1995.Google Scholar
  3. 3.
    A. M. Obukhov, C. R. Acad. Sci. URSS, Geogr. Geophys. 13, 58 (1949); S. Corrsin, J. Appl. Phys. 22, 469 (1951).Google Scholar
  4. 4.
    R. Antonia, E. Hopfinger, Y. Gagne, and F. Anselmet, Phys. Rev. A 30, 2704 (1984).CrossRefADSGoogle Scholar
  5. 5.
    R. H. Kraichnan, Phys. Fluids 11, 945 (1968).MATHMathSciNetGoogle Scholar
  6. 6.
    B. Shraiman and E. Siggia, C. R. Acad. Sci. 321, Ser. II, 279 (1995); Phys. Rev. Lett. 77, 2463 (1996).Google Scholar
  7. 7.
    K. Gawedzki and A. Kupiainen, Phys. Rev. Lett. 75, 3608 (1995); D. Bernard, K. Gawedzki, and A. Kupiainen, Phys. Rev. E 54, 2564 (1996); J. Stat. Phys. 90 (1998) [sic].Google Scholar
  8. 8.
    M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. E 52, 4924 (1995); M. Chertkov and G. Falkovich, Phys. Rev. Lett. 76, 2706 (1995).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    R. H. Kraichnan, V. Yakhot, and S. Chen, Phys. Rev. Lett. 75, 240 (1995); U. Frisch, A. Mazzino, and M. Vergassola, Phys. Rev. Lett. 80, 5532 (1998).CrossRefADSGoogle Scholar
  10. 10.
    R. H. Kraichnan, Phys. Rev. Lett. 52, 1016 (1994).ADSGoogle Scholar
  11. 11.
    V. Yakhot, Phys. Rev. E 55, 329 (1997).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    M. Chertkov, Phys. Rev. E 55, 2722 (1997).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    P. C. Martin, E. Siggia, and H. Rose, Phys. Rev. A 8, 423 (1973); C. de Dominicis, J. Phys. (Paris), Colloq. 37, C1-247 (1976); H. Janssen, Z. Phys. B 23, 377 (1976).ADSGoogle Scholar
  14. 14.
    G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).ADSGoogle Scholar
  15. 15.
    V. Gurarie and A. Migdal, Phys. Rev. E 54, 4908 (1996); E. Balkovsky, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 78, 1452 (1997); E. Balkovsky and G. Falkovich, Phys. Rev. E 57, 1231 (1998).CrossRefADSGoogle Scholar
  16. 16.
    G. Falkovich and V. Lebedev, Phys. Rev. Lett. 79, 4159 (1997).CrossRefADSGoogle Scholar
  17. 17.
    B. Shraiman and E. Siggia, Phys. Rev. E 49, 2912 (1994).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    E. Balkovsky and V. Lebedev, Phys. Rev E, to be published.Google Scholar
  19. 19.
    A. N. Kolmogorov, J. Fluid Mech. 12, 82 (1962).ADSMathSciNetGoogle Scholar
  20. 20.
    U. Frisch, A. Mazzino, and M. Vergassola, Proceedings of the European Geophysical Society Meeting, 1998.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1998

Authors and Affiliations

  • E. Balkovsky
    • 1
  • V. Lebedev
    • 1
    • 2
  1. 1.Department of Physics of Complex Systems, Weizmann Institute of ScienceRehovotIsrael
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations