Advertisement

Investigation of the crystallization of liquid iron under pressure: Extrapolation of the melt viscosity into the megabar range

  • V. V. Brazhkin
Condensed Matter

Abstract

Measurements are made of the average size of the crystallites in Fe samples obtained by rapid quenching from the melt at high pressures up to 95 kbar. The data obtained make it possible to estimate the pressure dependence of the viscosity of the Fe melt. It is found that, contrary to the existing empirical models, the viscosity increases along the melting curve under compression. Extrapolation of the pressure dependences obtained to the P, T conditions corresponding to the Earth’s core gives extremely high values of the viscosity, ranging from 102 Pa·s up to 1011 Pa·s in the outer core, which suggests that the inner core is in a glassy state. The possibility that the lines of vitrification and melting of substances intersect in the megabar range is discussed.

PACS numbers

61.50.Ks 64.70.Dv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Poirier, Geophys. J. 92, 9 (1988).Google Scholar
  2. 2.
    D. L. Anderson, Theory of the Earth, Blackwell Scientific Publications, Boston, 1989.Google Scholar
  3. 3.
    W. B. Hubbard, Planetary Interiors, Van Nostrand Reinhold Company Inc., 1984 [Russian translation, Mir, Moscow, 1987].Google Scholar
  4. 4.
    P. W. Bridgman, Collected Experimental Papers, Harvard University Press, Cambridge, Mass., 1964, Vol. IV, Paper 72, p. 2155.Google Scholar
  5. 5.
    M. Hsieh and R. A. Swalin, Acta Metall. 22, 219 (1974).Google Scholar
  6. 6.
    V. V. Zhakhovskii, Zh. Éksp. Teor. Fiz. 105, 1615 (1994) [JETP 78, 871 (1994)].Google Scholar
  7. 7.
    R. W. Keyes in Solids Under Pressure, edited by W. Paul and D. M. Warschauer, McGraw-Hill, New York, 1963, p. 71.Google Scholar
  8. 8.
    N. J. Trappeniers, P. S. van der Gulik, and H. van den Hooff, Chem. Phys. Lett. 70, 438 (1980).CrossRefADSGoogle Scholar
  9. 9.
    P. W. Bridgman, Collected Experimental Papers, Harvard University Press, Cambridge, MA, 1964, Vol. VI, Paper 166, p. 3903.Google Scholar
  10. 10.
    R. G. Munro, G. J. Piermarini, and S. Block, Rev. Phys. Chem. Jpn. 50, 79 (1980).Google Scholar
  11. 11.
    V. V. Brazhkin, V. I. Larchev, S. V. Popova, and G. G. Skrotskaya, Phys. Scr. 39, 338 (1989).ADSGoogle Scholar
  12. 12.
    V. V. Brazhkin and S. V. Popova, Rasplavy 4, 97 (1989).Google Scholar
  13. 13.
    V. V. Brazhkin and S. V. Popova, Rasplavy 1, 10 (1990).Google Scholar
  14. 14.
    V. V. Kuznetsov, Usp. Fiz. Nauk 167, 1001 (1997).Google Scholar
  15. 15.
    X. Song and P. G. Richards, Nature (London) 382, 221 (1996).CrossRefADSGoogle Scholar
  16. 16.
    M. W. Gunian and D. J. Steinberg, J. Phys. Chem. Solids 35, 1501 (1974).Google Scholar
  17. 17.
    R. Boehler, Nature (London) 363, 534 (1993).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1998

Authors and Affiliations

  • V. V. Brazhkin
    • 1
  1. 1.Institute of High-Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow RegionRussia

Personalised recommendations