Thermopower in the hopping conductivity region: Transition from Mott’s to Zvyagin’s formula

  • S. V. Demishev
  • M. V. Kondrin
  • A. A. Pronin
  • N. E. Sluchanko
  • N. A. Samarin
  • A. G. Lyapin
  • G. Biscupski
Condensed Matter

Abstract

Zvyagin’s theoretical calculation for the thermopower due to electron hops is confirmed experimentally. It is shown for a-GaSb that in the Mott-law region the thermopower is a square-root function of temperature \(\sqrt T \), and at low temperatures T<25 K the hopping contribution to the Seebeck coefficient dominates. A temperature increase induces a transition to conductivity due to hops between nearest centers. The thermopower in this regime is described by the Mott formula modified so as to take into account the higher-order derivatives of the density of states. It is established that in a-GaSb the thermopower at temperatures 4.2 K <T<300 K can be represented as a superposition of two contributions: a hopping contribution and an anomalous contribution presumably due to phonon drag. A model is proposed which gives a quantitative description of the temperature dependence of the hopping thermopower on the basis of a single setup parameters characterizing the density of localized states.

PACS numbers

72.20.Fr 72.20.Pa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. P. Zvyagin, Transport Phenomena in Disordered Semiconductors [in Russian], Izd. MGU, Moscow, 1984.Google Scholar
  2. 2.
    H. Graener, M. Rosenberg, T. E. Whall, and M. R. B. Jones, Philos. Mag. B 44, 389 (1981).Google Scholar
  3. 3.
    A. A. Andreev, O. A. Golikova, M. M. Kazanin et al., Fiz. Tekh. Poluprovodn. 15, 1210 (1981) [Sov. Phys. Semicond. 15, 697 (1981)].Google Scholar
  4. 4.
    N. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, 1971; Mir, Moscow, 1982.Google Scholar
  5. 5.
    I. P. Zvyagin, Fiz. Tekh. Poluprovodn. 12, 1018 (1978) [Sov. Phys. Semicond. 12, 606 (1978)].Google Scholar
  6. 6.
    S. V. Demishev, D. G. Lunts, A. G. Lyapin et al., Zh. Éksp. Teor. Fiz. 110, 334 (1996) [JETP 83, 180 (1996)].Google Scholar
  7. 7.
    S. V. Demishev, A. A. Pronin, N. E. Sluchanko et al., JETP Lett. 65, 342 (1997).CrossRefADSGoogle Scholar
  8. 8.
    S. V. Demishev, Yu. V. Kosichkin, D. G. Lunts et al., Zh. Éksp. Teor. Fiz. 100, 707 (1991) [Sov. Phys. JETP 73, 394 (1991)].Google Scholar
  9. 9.
    S. V. Demishev, M. V. Kondrin, V. V. Glushkov et al., Zh. Éksp. Teor. Fiz. 113, 323 (1998) [JETP 86, 182 (1998)].Google Scholar
  10. 10.
    N. E. Sluchanko, V. V. Glushkov, S. V. Demishev et al., Zh. Éksp. Teor. Fiz. 113, 339 (1998) [JETP 86, 190 (1998)].Google Scholar
  11. 11.
    M. H. Brodsky (Ed.), Amorphous Semiconductors, Vol. 36 of Topics in Applied Physics Series, Springer-Verlag, Berlin-New York, 1979; Mir, Moscow, 1982.Google Scholar
  12. 12.
    V. V. Kosarev, Fiz. Tverd. Tela (Leningrad) 18, 1703 (1976) [Sov. Phys. Solid State 18, 989 (1976)].Google Scholar
  13. 13.
    K. Seeger, Semiconductor Physics, Springer-Verlag, New York, 1974; Mir, Moscow, 1977.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1998

Authors and Affiliations

  • S. V. Demishev
    • 1
  • M. V. Kondrin
    • 1
  • A. A. Pronin
    • 1
  • N. E. Sluchanko
    • 1
  • N. A. Samarin
    • 1
  • A. G. Lyapin
    • 2
  • G. Biscupski
    • 3
  1. 1.Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of High-Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow RegionRussia
  3. 3.Université des Sciences et Technologies de LilleLilleFrance

Personalised recommendations