Advertisement

Gravity of monopole and string and the gravitational constant in 3He-A

  • E. Volovik
Condensed Matter

Abstract

We discuss the effective metric produced in superfluid 3He-A by such topological objects as the radial disgyration and monopole. In relativistic theories these metrics are similar to that of the local string and global monopole, respectively. But in 3He-A they have a negative angle deficit, which corresponds to a negative mass of the topological objects. The effective gravitational constant in superfluid 3He-A, deduced from a comparison with relativistic theories, is G∼Δ−2, where the gap amplitude Δ plays the part of the Planck energy. G depends on temperature roughly as (1−T2/T c 2 )−2 and corresponds to a screening of Newton’s constant.

PACS numbers

04.80.2y 06.20.Jr 67.57.2z 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. O. Katanaev and I. V Volovich, “Scattering on dislocations and cosmic strings in the geometric theory of defects,” http://xxx.lanl.gov/abs/gr-qc/9801081.
  2. 2.
    R. Bausch and R. Schmitz, Phys. Rev. Lett. 80, 2257 (1998).CrossRefADSGoogle Scholar
  3. 3.
    W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).CrossRefADSGoogle Scholar
  4. 4.
    M. Visser, “Acoustic black holes: horizons, ergospheres, and Hawking radiation,” http://xxx.lanl.gov/abs/gr-qc/9712010.
  5. 5.
    G. E. Volovik and T. Vachaspati, Int. J. Mod. Phys. B 10, 471 (1996).ADSGoogle Scholar
  6. 6.
    T. Jacobson and G. E. Volovik, “Event horizons and ergoregions in 3He,” http://xxx.lanl.gov/abs/cond-mat/9801308.
  7. 7.
    G. E. Volovik, Exotic properties of superfluid 3 He, World Scientific, Singapore, 1992.Google Scholar
  8. 8.
    G. E. Volovik, “Axial anomaly in 3He-A,” http://xxx.lanl.gov/abs/cond-mat/9802091.
  9. 9.
    D. D. Sokolov, A. A. Starobinsky, Dokl. AN SSSR, 234, 1043 (1977) [Sov. Phys. Dokl. 22, 312 (1977)].Google Scholar
  10. 10.
    M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992).ADSMathSciNetGoogle Scholar
  11. 11.
    D. Vollhardt and P. Wolfle, The superfluid phases of helium 3, Taylor & Francis, London, 1990.Google Scholar
  12. 12.
    G. E. Volovik, Usp. Fiz. Nauk. 143, 73 (1984) [Sov. Phys. Usp. 27, 363 (1984)].Google Scholar
  13. 13.
    M. Barriola and A. Vilenkin, Phys. Rev. Lett. 63, 341 (1989).CrossRefADSGoogle Scholar
  14. 14.
    D. Harari and C. Lousto, Phys. Rev. D 42, 2626 (1990).ADSGoogle Scholar
  15. 15.
    I. Cho and A. Vilenkin, Phys. Rev. D 56, 7621 (1997).ADSGoogle Scholar
  16. 16.
    J. D. Barrow, “Varying G and other constants,” http://xxx.lanl.gov/abs/gr-qc/9711084.
  17. 17.
    A. D. Sakharov, Dokl. Akad. Nauk 177, 70 (1968) [Sov. Phys. Dokl. 12, 1040 (1968)].Google Scholar
  18. 18.
    M. Reuter, Phys. Rev. D 57, 971 (1998).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1998

Authors and Affiliations

  • E. Volovik
    • 1
    • 2
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyEspooFinland
  2. 2.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations