On the nature of the γ-α transition in cerium

  • G. Eliashberg
  • H. Capellmann
Condensed Matter


In 1964 Davis and Adams established that the large increase of the thermal expansion and compressibility in the critical region of the γ-to α-Ce phase transition occurs predominantly in the α phase. This provides strong evidence that a tricritical point is realized in Ce. This also means that the aforementioned transition is not isomorphic and that α-Ce should have a distorted fcc structure. A careful examination of Jayaraman’s data (1965) shows that a second-order transition line continues beyond the tricritical point to the vicinity of a triple point on the melting curve. The phase boundary with the tricritical point and the minimum of the melting curve are reconstructed within the framework of Landau theory.

PACS numbers

64.70.Kb 65.70.+y 81.05.Bx 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Staun Olsen, L. Gerward, U. Benedict and J.-P. Itié, Physica B 133, 129 (1985).Google Scholar
  2. 2.
    Y. C. Zhao and W. B. Holzapfel, J. Alloys Compounds 246, 216 (1997).Google Scholar
  3. 3.
    D. A. Koskenmaki and K. A. Gschneidner Jr., in Handbook on the Physics and Chemistry of Rare Earths, edited by K. A. Gschneidner Jr. and L. Eyring, North-Holland, Amsterdam, 1978, Chap. 4.Google Scholar
  4. 4.
    A. Jayaraman, Phys. Rev. 137, A179 (1965).CrossRefADSGoogle Scholar
  5. 5.
    Ye. G. Ponyatovskii, Dokl. Akad. Nauk SSSR 120, 10221 (1958).Google Scholar
  6. 6.
    R. I. Beecroft and S. A. Swenson, J. Phys. Chem. Solids 15, 234 (1960).Google Scholar
  7. 7.
    B. L. Davis and L. H. Adams, J. Phys. Chem. Solids 25, 379 (1964).Google Scholar
  8. 8.
    L. D. Landau, Phys. Z. Sowjetunion 8, 113 (1935); 11, 26 (1937).zbMATHGoogle Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press, Oxford, 1958.Google Scholar
  10. 10.
    R. B. Griffiths, Phys. Rev. Lett. 24, 715 (1970).ADSGoogle Scholar
  11. 11.
    W. A. Grosshans, Y. K. Vohra, and W. B. Holzapfel, Phys. Rev. Lett. 49, 1572 (1982).CrossRefADSGoogle Scholar
  12. 12.
    F. Porsch and W. B. Holzapfel, Phys. Rev. Lett. 70, 4087 (1993).CrossRefADSGoogle Scholar
  13. 13.
    N. Hamaya, Y. Kakamoto, H. Fujihisa et al., J. Phys.: Condens. Matter 5, L369 (1993).CrossRefADSGoogle Scholar
  14. 14.
    Y. C. Zhao, F. Porsch, and W. B. Holzapfel, Phys. Rev. B 52, 134 (1995).ADSGoogle Scholar
  15. 15.
    L. D. Livshitz, Yu. S. Genshaft, and V. K. Markof, Zh. Éksp. Teor. Fiz. 43, 1262 (1962) [Sov. Phys. JETP 16, 894 (1963)].Google Scholar
  16. 16.
    C. Stassis, T. Gould, O. D. McMasters et al., Phys. Rev. B 19, 5746 (1979).ADSGoogle Scholar
  17. 17.
    C. Stassis, C.-K. Loong, and J. Zaretsky, Phys. Rev. B 26, 5426 (1982).ADSGoogle Scholar
  18. 18.
    C. Stassis, G. Smith, B. N. Harmon et al., Phys. Rev. B 31, 6298 (1985).CrossRefADSGoogle Scholar
  19. 19.
    C. Stassis, C.-K. Loong, G. D. MacMasters, and R. M. Nicklow, Phys. Rev. B 25, 6485 (1982).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1998

Authors and Affiliations

  • G. Eliashberg
    • 1
    • 2
  • H. Capellmann
    • 2
  1. 1.Institut für Theoretische PhysikRWTH AachenAachenGermany
  2. 2.Landau Institute of Theoretical PhysicsChernogolovkaRussia

Personalised recommendations