Critical velocity and event horizon in pair-correlated systems with “relativistic” fermionic quasiparticles

  • N. B. Kopnin
  • G. E. Volovik
Condensed Matter


The condition for the appearance of an event horizon is considered in pair-correlated systems (superfluids and superconductors) in which the fermionic quasiparticles obey “relativistic” equations. In these systems the Landau critical velocity of superflow corresponds to the speed of light. In conventional systems, such as s-wave superconductors, the superflow remains stable even above the Landau threshold. We show, however, that, in “ relativistic” systems, the quantum vacuum becomes unstable and the superflow collapses after the “speed of light” is reached, so that the horizon cannot appear. Thus an equilibrium dissipationless superflow state and the horizon are incompatible on account of quantum effects. This negative result is consistent with the quantum Hawking radiation from the horizon, which would lead to a dissipation of the flow.

PACS numbers

67.20.+k, 74.20.−z 04.60.−m 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981); Phys. Rev. D 51, 2827 (1995).CrossRefADSGoogle Scholar
  2. 2.
    T. Jacobson, Phys. Rev. D 44, 1731 (1991).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
  4. 4.
    T. Jacobson and G. E. Volovik, “Event horizons in 3He,” to be published.Google Scholar
  5. 5.
    N. B. Kopnin and G. E. Volovik, “Rotating vortex core: an instrument for detecting the core excitations, ”
  6. 6.
    G. E. Volovik, Exotic properties of superfluid 3He, World Scientific, Singapore-New Jersey-London-Hong Kong, 1992.Google Scholar
  7. 7.
    G. E. Volovik, JETP Lett. 63, 483 (1996)]; “Simulation of quantum field theory and gravity in superfluid He-3,” Scholar
  8. 8.
    S. H. Simon and P. A. Lee, Phys. Rev. Lett. 78, 1548 (1997).ADSGoogle Scholar
  9. 9.
    S. W. Hawking, Nature 248, 30 (1974); Commun. Math. Phys. 43, 199 (1975).CrossRefADSGoogle Scholar
  10. 10.
    J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).ADSMathSciNetGoogle Scholar
  11. 11.
    D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3, Taylor & Francis, London, 1990.Google Scholar
  12. 12.
    P. Muzikar, and D. Rainer, Phys. Rev. B 27, 4243 (1983).CrossRefADSGoogle Scholar
  13. 13.
    K. Nagai, J. Low Temp. Phys. 55, 233 (1984).CrossRefGoogle Scholar
  14. 14.
    D. Vollhardt, K. Maki, and N. Schopohl, J. Low Temp. Phys. 39, 79 (1980).CrossRefGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1998

Authors and Affiliations

  • N. B. Kopnin
    • 1
    • 2
  • G. E. Volovik
    • 1
    • 2
  1. 1.Helsinki University of TechnologyLow Temperature LaboratoryHUTFinland
  2. 2.Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations