Advertisement

Shock wave structure in dense gases

  • V. V. Zhakhovskii
  • K. Nishihara
  • S. I. Anisimov
Plasma, Gases

Abstract

The internal structure of a shock wave front in a gas is studied by molecular dynamics (MD) simulation. A new approach to MD shock simulation is used, which enables one to consider a stationary shock front at rest and radically improves the quality of simulation. The profiles of flow variables and their fluctuations are calculated. The evolution of the velocity distribution function across the shock layer is calculated and compared with the bimodal distribution. The pair distribution function in the shock layer is determined. The surface tension associated with the shock wave is estimated.

PACS numbers

52.35.Tc 51.10.+y 02.70.Ns 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Oxford: Pergamon Press, 1959.Google Scholar
  2. 2.
    H. W. Liepman, R. Narashima, and M. T. Chahine, Phys. Fluids 5, 1313 (1962).Google Scholar
  3. 3.
    D. Gilbarg and D. Paolucci, J. Ratl. Mech. Anal. 2, 617 (1953).MathSciNetGoogle Scholar
  4. 4.
    I. E. Tamm, Tr. Fiz. Inst. Akad. Nauk SSSR 29, 317 (1965).Google Scholar
  5. 5.
    H. M. Mott-Smith, Phys. Rev. 82, 885 (1951).CrossRefADSMATHMathSciNetGoogle Scholar
  6. 6.
    C. Muckenfuss, Phys. Fluids 5, 1325 (1962).Google Scholar
  7. 7.
    W. Fiszdon, R. Herczynski, and Z. Walenta, in Rarefied Gas Dynamics, edited by M. Becker and M. Fiebig, Porz-Wahn, DFVLR Pres, 1974, p. B23Google Scholar
  8. 8.
    S. M. Yen, Annu. Rev. Fluid Mech. 16, 67 (1984).CrossRefADSMATHGoogle Scholar
  9. 9.
    G. A. Bird, Molecular Gas Dynamics, Oxford: Clarendon Press, 1976.Google Scholar
  10. 10.
    G. Ya. Lyubarsky, Zh. Éksp. Teor. Fiz. 40, 1050 (1961) [Sov. Phys. JETP 13, 740 (1961)].Google Scholar
  11. 11.
    R. G. Barantsev, Zh. Éksp. Teor. Fiz. 42, 889 (1962) [Sov. Phys. JETP 15, 615 (1962)].MATHGoogle Scholar
  12. 12.
    W. G. Hoover, Phys. Rev. Lett. 42, 1531 (1979).CrossRefADSGoogle Scholar
  13. 13.
    B. L. Holian, W. G. Hoover, and B. Moran, G. K. Straub, Phys. Rev. A 22, 2798 (1980); B. L. Holian, Phys. Rev. A 37, 2562 (1988).CrossRefADSGoogle Scholar
  14. 14.
    M. Koshi, T. Saito, H. Nagoya et al., Kayaku Gakkaishi 55, 229 (1994).Google Scholar
  15. 15.
    E. Salomons and M. Marechal, Phys. Rev. Lett. 69, 269 (1992).CrossRefADSGoogle Scholar
  16. 16.
    S. I. Anisimov and V. V. Zhakhovskii, JETP Lett. 57, 99 (1993).ADSGoogle Scholar
  17. 17.
    D. W. Heerman, Computer Simulation Methods in Theoretical Physics, Berlin-New York: Springer-Verlag, 1986.Google Scholar
  18. 18.
    V. V. Zhakhovskii and S. I. Anisimov, Zh. Éksp. Teor. Fiz. 111, 1328 (1997) [JETP 84, 734 (1997)].Google Scholar
  19. 19.
    V. A. Rabinovich, A. A. Vasserman, V. I. Nedostup, and L. S. Veksler, Thermodynamical Properties of Neon, Argon, Krypton, and Xenon, Berlin-New York: Hemisphere, 1988.Google Scholar
  20. 20.
    P. Resibois and M. De Lechner, Classical Kinetic Theory of Fluids, New York: J. Wiley and Sons, 1977.Google Scholar
  21. 21.
    A. G. Bashkirov, Phys. Fluids A 3, 960 (1991).CrossRefADSMATHMathSciNetGoogle Scholar
  22. 22.
    J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Oxford: Clarendon Press, 1982.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1997

Authors and Affiliations

  • V. V. Zhakhovskii
    • 1
  • K. Nishihara
    • 2
  • S. I. Anisimov
    • 3
  1. 1.Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Laser EngineeringOsaka UniversityOsakaJapan
  3. 3.Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations