Does the Unruh effect exist?

  • V. A. Belinskii
  • B. M. Karnakov
  • V. D. Mur
  • N. B. Narozhnyi
Gravity, Astrophysics


It is shown that quantization on the Fulling modes presupposes that the field vanishes on the spatial boundaries of the Rindler manifold. For this reason, Rindler space is physically unrelated with Minkowski space and the state of a Rindler observer cannot be described by the equilibrium density matrix with the Fulling-Unruh temperature. Therefore it is pointless to talk about an Unruh effect. The question of the behavior of an accelerated detector in the physical formulation of the problem remains open.

PACS numbers

03.70.+k 04.60.−m 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. G. Unruh, Phys. Rev. D 14, 870 (1976).ADSGoogle Scholar
  2. 2.
    N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge University Press, New York, 1982.Google Scholar
  3. 3.
    W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer-Verlag, New York, 1985.Google Scholar
  4. 4.
    V. L. Ginzburg and V. P. Frolov, Usp. Fiz. Nauk 153, 633 (1987) [Sov. Phys. Usp. 30, 1073 (1987)].Google Scholar
  5. 5.
    A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields [in Russian], Énergoizdat, Moscow, 1988.Google Scholar
  6. 6.
    R. M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, Chicago University Press, Chicago, 1994.Google Scholar
  7. 7.
    S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).MathSciNetGoogle Scholar
  8. 8.
    S. A. Fulling, Phys. Rev. D 7, 2850 (1973).CrossRefADSGoogle Scholar
  9. 9.
    A. I. Nikishov and V. I. Ritus, Zh. Éksp. Teor. Fiz. 94, 31 (1988) [Sov. Phys. JETP 67, 1313 (1988)].Google Scholar
  10. 10.
    D. G. Boulware, Phys. Rev. D 11, 1404 (1975).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    R. Peierls, Surprises in Theoretical Physics, Princeton University Press, Princeton, 1979.Google Scholar
  12. 12.
    V. L. Ginzburg, Theoretical Physics and Astrophysics, Pergamon Press, New York, 1979 [Russian original, Nauka, Moscow, 1981].Google Scholar
  13. 13.
    Ya. B. Zel’dovich, L. V. Rozhanskii, and A. A. Starobinskii, JETP Lett. 43, 523 (1986).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1997

Authors and Affiliations

  • V. A. Belinskii
    • 1
  • B. M. Karnakov
    • 2
  • V. D. Mur
    • 2
  • N. B. Narozhnyi
    • 2
  1. 1.INFN and ICRARome University “La Sapienza,”RomeItaly
  2. 2.Moscow State Engineering-Physics InstituteMoscowRussia

Personalised recommendations