Shock wave structure in simple liquids

  • S. I. Anisimov
  • V. V. Zhakhovskii
  • V. E. Fortov
Condensed Matter


The shock wave structure in a liquid is studied by a molecular dynamics simulation method. The interaction between atoms is described by the Lennard-Jones (6–12) potential. In contrast to earlier works, the simulation is performed in a reference frame tied to the shock wave front. This approach reduces non-physical fluctuations and makes it possible to calculate the distribution functions of the kinetic and potential energy for several cross sections within the shock layer. The profiles of flow variables and their fluctuations are found. The surface tension connected with pressure anisotropy within the shock front is calculated. It is shown that the main contribution to the surface tension coefficient comes from the mean virial.

PACS numbers

02.70.Ns 62.50.+p 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Muntz and L. M. Harnett, Phys. Fluids 12, 2027 (1969).CrossRefGoogle Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 1959.Google Scholar
  3. 3.
    H. W. Liepman, R. Narashima, and M. T. Chahine, Phys. Fluids 5, 1313 (1962).Google Scholar
  4. 4.
    D. Gilbarg and D. Paolucci, J. Ratl. Mech. Anal. 2, 617 (1953).MathSciNetGoogle Scholar
  5. 5.
    C. Muckenfuss, Phys. Fluids 5, 1325 (1962).Google Scholar
  6. 6.
    I. E. Tamm, Tr. Fiz. Inst. Akad. Nauk SSSR 29, 317 (1965).Google Scholar
  7. 7.
    H. M. Mott-Smith, Phys. Rev. 82, 885 (1951).CrossRefADSzbMATHMathSciNetGoogle Scholar
  8. 8.
    W. Fiszdon, R. Herczynski, and Z. Walenta, in Rarefied Gas Dynamics, Eds. M. Becker and M. Fiebig, Porz-Wahn, DFVLR Press, 1974, p. B23.Google Scholar
  9. 9.
    G. A. Bird, Phys. Fluids 13, 1172 (1979).Google Scholar
  10. 10.
    W. G. Hoover, Phys. Rev. Lett. 42, 1531 (1979).CrossRefADSGoogle Scholar
  11. 11.
    B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, Phys. Rev. A 22, 2798 (1980).CrossRefADSGoogle Scholar
  12. 12.
    E. Salomons and M. Marechal, Phys. Rev. Lett. 69, 269 (1992).CrossRefADSGoogle Scholar
  13. 13.
    M. Koshi, T. Saito, H. Nagoya et al., Kayaku Gakkaishi 55, 229 (1994).Google Scholar
  14. 14.
    V. V. Zhakhovskii and S. I. Anisimov, Zh. Éksp. Teor. Fiz. 111, 1328 (1997) [JETP 84, 734 (1997)].Google Scholar
  15. 15.
    D. W. Heerman, Computer Simulation Methods in Theoretical Physics, Springer Verlag, Berlin-New York, 1986.Google Scholar
  16. 16.
    V. V. Zhakhovskii, K. Nishihara, and S. I. Anisimov, Phys. Rev. Lett., in press.Google Scholar
  17. 17.
    S. I. Anisimov and V. V. Zhakhovskii, JETP Lett. 57, 99 (1993).ADSGoogle Scholar
  18. 18.
    J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Clarendon Press, Oxford, 1982.Google Scholar
  19. 19.
    P. Resibois and M. De Lechner, Classical Kinetic Theory of Fluids, Wiley, New York, 1977.Google Scholar
  20. 20.
    A. G. Bashkirov, Nonequilibrium Statistical Mechanics of Heterogeneous Fluid Systems, CRC Press, Boca Raton-London-Tokyo, 1995.Google Scholar
  21. 21.
    W. M. Kornegay, J. D. Fridman, and W. C. Worthington, in Proceedings of the 6th International Symposium on Rarefied Gas Dynamics, 1969, Vol. 1, p. 863.Google Scholar
  22. 22.
    S. P. Dyakov, Zh. Éksp. Teor. Fiz. 27, 288 (1954).zbMATHMathSciNetGoogle Scholar
  23. 23.
    A. G. Bashkirov, Phys. Fluids A 3, 960 (1991).CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1997

Authors and Affiliations

  • S. I. Anisimov
    • 1
  • V. V. Zhakhovskii
    • 1
  • V. E. Fortov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations