Parity effect and charge-binding transition in submicron Josephson junction arrays

  • M. V. Feigel’man
  • S. E. Korshunov
  • A. B. Pugachev
Condensed Matter


We reconsider the Berezinski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \)-Kosterlitz-Thouless (BKT) transition to an insulating state in Coulomb-dominated Josephson junction arrays. We show that the previously predicted picture of the Cooper-pair BKT transition at T=T2 is valid only under the condition that T2 is considerably below the parity-effect temperature T*≈0.1Δ, and that even in that case it is not a rigorous phase transition but only a crossover, whereas the real phase transition takes place at T1=T2/4. Our theory is in agreement with available experimental data on Coulomb-dominated Josephson arrays and also sheds some light on the origin of the unusual reentrant temperature dependence of the resistivity in an array with a nearly critical ratio E C /E J .

PACS numbers

74.50.+r 74.80.Dm 73.23.Hk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. S. J. van der Zant, F. C. Fritschy et al., Phys. Rev. Lett. 69, 2971 (1992).ADSGoogle Scholar
  2. 2.
    H. S. J. van der Zant, W. J. Elion, L. J. Geerlings, and J. E. Mooji, Phys. Rev. B 54, 10081 (1996).Google Scholar
  3. 3.
    T. S. Tighe, M. T. Tuominen, J. M. Hergenrother, and M. Tinkham, Phys. Rev. B 47, 1145 (1993).CrossRefADSGoogle Scholar
  4. 4.
    P. Delsing, C. D. Chen, D. B. Haviland et al., Phys. Rev. B 50, 3959 (1994).CrossRefADSGoogle Scholar
  5. 5.
    R. Fazio and G. Schon, Phys. Rev. B 43, 5307 (1991).CrossRefADSGoogle Scholar
  6. 6.
    R. Fazio et al., Helv. Phys. Acta 65, 228 (1992).Google Scholar
  7. 7.
    F. Hekking, G. Schoen and D. Averin (eds.), Proceedings of the NATO Advanced Research Workshop on Mesoscopic Superconductivity, Karlsruhe, 1994 [Physica B 203, Nos. 3–4 (1994)].Google Scholar
  8. 8.
    V. L. Berezinskii, Zh. Éksp. Teor. Fiz. 59, 907 (1970) [Sov. Phys. JETP 32, 493 (1971)]; J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).Google Scholar
  9. 9.
    J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).CrossRefADSGoogle Scholar
  10. 10.
    J. E. Mooji and G. Schoen, in Single Electron Tunnelling, Eds. H. Grabert and M. Devoret, Plenum, New York 1992 (Chapter 8 and references therein).Google Scholar
  11. 11.
    A. Kanda and S. Kobayashi, submitted to Phys. Rev. B (1996).Google Scholar
  12. 12.
    K. B. Efetov, Zh. Éksp. Teor. Fiz. 78, 2017 (1980) [Sov. Phys. JETP 51, 1015 (1980)].ADSGoogle Scholar
  13. 13.
    M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Phys. Rev. Lett. 69, 1997 (1992).CrossRefADSGoogle Scholar
  14. 14.
    F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shekhter, Phys. Rev. Lett. 70, 4138 (1993); P. Joyez, P. Lafarge, A. Filipe et al., Phys. Rev. Lett. 72, 2458 (1994).CrossRefADSGoogle Scholar
  15. 15.
    D. V. Averin and Yu. V. Nazarov, in op. cit. 7, p. 310.Google Scholar
  16. 16.
    L. Glazman et al., in op. cit. 7, p. 316.Google Scholar
  17. 17.
    J. A. Jaszczak and W. F. Saam, Phys. Rev. B 377, 7619 (1988).ADSGoogle Scholar
  18. 18.
    B. Janko and V. Ambegaokar, Phys. Rev. Lett. 75, 1154 (1995).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1997

Authors and Affiliations

  • M. V. Feigel’man
    • 1
  • S. E. Korshunov
    • 1
  • A. B. Pugachev
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations