Fermionic entropy of the vortex state in d-wave superconductors

  • G. E. Volovik
Condensed Matter


In d-wave superconductors the electronic entropy associated with an isolated vortex diverges logarithmically with the size of the system even at low temperatures. In the vortex array the entropy per vortex per layer, S V , is much larger than k B and depends on the distribution of the velocity field v s around the vortex. If there is a first-order transition upon a change of the velocity distribution, then there will be a big entropy jump ΔS V k B at the transition. This entropy jump comes from the electronic degrees of freedom on the vortex background, which is modified by the vortex transition. This can explain the big jump in the entropy observed in the so-called vortex-melting transition [A. Junod, M. Roulin, J-Y. Genoud et al., Physica C, to be published], in which the vortex array and thus the velocity field are redistributed. The possibility of the Berezinskii-Kosterlitz-Thouless transition in the 3-dimensional d-wave superconductor due to the fermionic bound states in the vortex background is discussed.

PACS numbers

74.20.−z 74.72.−h 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Junod, M. Roulin, J-Y. Genoud et al., Physica C, to be published.Google Scholar
  2. 2.
    G. E. Volovik, cond-mat/9603094; Tr. J. Phys. 20, 693 (1996).Google Scholar
  3. 3.
    G. E. Volovik, JETP Lett. 58, 469 (1993).ADSGoogle Scholar
  4. 4.
    N. B. Kopnin and G. E. Volovik, JETP Lett. 64, 690 (1996).CrossRefADSGoogle Scholar
  5. 5.
    S. H. Simon and P. A. Lee, Phys. Rev. Lett. 78, 1548 (1997).ADSGoogle Scholar
  6. 6.
    G. E. Volovik and V. P. Mineev, Zh. Éksp. Teor. Fiz. 81, 989 (1981) [Sov. Phys. JETP 54, 524 (1981)].Google Scholar
  7. 7.
    P. Muzikar and D. Rainer, Phys. Rev. B 27, 4243 (1983).CrossRefADSGoogle Scholar
  8. 8.
    K. Nagai, J. Low Temp. Phys. 55, 233 (1984).CrossRefGoogle Scholar
  9. 9.
    D. Xu, S. Yip, and J. A. Sauls, Phys. Rev. B 51, 16233 (1995).Google Scholar
  10. 10.
    A. Schilling, R. A. Fisher, N. E. Phillips et al., Nature 382, 791 (1996).CrossRefADSGoogle Scholar
  11. 11.
    T. Nishizaki, Y. Onodera, T. Naito, and N. Kobayashi, J. Low Temp. Phys. 105, 1183 (1996).CrossRefGoogle Scholar
  12. 12.
    I. Maggio-Aprile, Ch. Renner, A. Erb et al., Phys. Rev. Lett. 75, 2754 (1995).CrossRefADSGoogle Scholar
  13. 13.
    I. Affleck, M. Franz, and M. H. S. Amin, Phys. Rev. B 55, R704 (1997).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1997

Authors and Affiliations

  • G. E. Volovik
    • 1
    • 2
    • 3
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyEspooFinland
  2. 2.L. D. Landau Institute of Theoretical PhysicsMoscowRussia
  3. 3.Centre de Recherches sur les Très Basses Températures, CNRSGrenoble CEDEX 09France

Personalised recommendations