Advertisement

Comment on vortex mass and quantum tunneling of vortices

  • G. E. Volovik
Condensed Matter

Abstract

Vortex mass in Fermi superfluids and superconductors and its influence on quantum tunneling of vortices are discussed. The vortex mass is essentially enhanced due to the fermion zero modes in the core of the vortex: the bound states of the Bogoliubov quasiparticles localized in the core. These bound states form the normal component, which is nonzero even in the low-temperature limit. In the collisionless regime ω0τ≫1 the normal component trapped by the vortex is unbound from the normal component in a bulk superfluid/superconductor and adds to the inertial mass of the moving vortex. In a d-wave superconductor the vortex mass has an additional factor of (Bc2/B)1/2 due to the gap nodes.

PACS numbers

74.60.Ge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ü. Parts, V. M. H. Ruutu, J. H. Koivuniemi et al., Europhys. Lett. 31, 449 (1995).Google Scholar
  2. 2.
    N. B. Kopnin, JETP Lett. 27, 390 (1978).ADSGoogle Scholar
  3. 3.
    G. E. Volovik, JETP Lett. 15, 81 (1972).ADSGoogle Scholar
  4. 4.
    E. B. Sonin, Zh. Éksp. Teor. Fiz. 64, 970 (1973) [Sov. Phys. JETP 37, 494 (1973)].Google Scholar
  5. 5.
    M. Rasetti and T. Regge, Physica A 80, 217 (1975).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    E. M. Lifshitz and Yu. Kagan, Zh. Éksp. Teor. Fiz. 62, 385 (1972) [Sov. Phys. JETP 35, 206 (1972)].Google Scholar
  7. 7.
    S. V. Iordanskii and A. M. Finkelstein, Zh. Éksp. Teor. Fiz. 62, 403 (1972) [Sov. Phys. JETP 35, 215 (1972)].Google Scholar
  8. 8.
    G. Blatter, V. B. Geshkenbein and V. M. Vinokur, Phys. Rev. Lett. 66, 3297 (1991).ADSGoogle Scholar
  9. 9.
    R. L. Davis, Physica B 178, 76 (1992).ADSGoogle Scholar
  10. 10.
    H-c Kao and K. Lee, hep-th/9503200; R. Iengo, and G. Jug, cond-mat/9506062.Google Scholar
  11. 11.
    F. Lund and T. Regge, Phys. Rev. D 14, 1524 (1976).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    J. M. Duan, Phys. Rev. B 48, 4860 (1993); Phys. Rev. Lett. 72, 586 (1994).ADSGoogle Scholar
  13. 13.
    A. Nikiforov, E. B. Sonin, Zh. Éksp. Teor. Fiz. 85, 642 (1983) [Sov. Phys. JETP 58, 373 (1983)].Google Scholar
  14. 14.
    R. L. Davis and E. P. S. Shellard, Phys. Rev. Lett. 63, 2021 (1989).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    J. M. Duan, Phys. Rev. Lett. 75, 974 (1995).CrossRefADSGoogle Scholar
  16. 16.
    C. Wexler and D. J. Thouless, cond-mat/9612059.Google Scholar
  17. 17.
    C. Caroli, P. G. de Gennes and J. Matricon, Phys. Rev. Lett. 9, 307 (1964).Google Scholar
  18. 18.
    N. B. Kopnin, Physica B 210, 267 (1995).CrossRefADSGoogle Scholar
  19. 19.
    A. van Otterlo, M. V. Feigel’man, V. B. Geshkenbein, and G. Blatter, Phys. Rev. Lett. 75, 3736 (1995).ADSGoogle Scholar
  20. 20.
    M. Stone, Phys. Rev. B 54, 13222 (1996).Google Scholar
  21. 21.
    M. M. Salomaa and G. E. Volovik, Rev. Mod. Phys. 59, 533 (1987).CrossRefADSGoogle Scholar
  22. 22.
    A. J. Manninen, T. D. C. Bevan, J. B. Cook et al., Phys. Rev. Lett. 77, 5086 (1996).CrossRefADSGoogle Scholar
  23. 23.
    G. E. Volovik, and V. P. Mineev, Zh. Éksp. Teor. Fiz. 81, 989 (1981) [Sov. Phys. JETP 54, 524 (1981)].Google Scholar
  24. 24.
    G. E. Volovik, in Helium Three, eds. W. P. Halperin, L. P. Pitaevskii, Elsevier Science Publishers B. V., p. 27, 1990.Google Scholar
  25. 25.
    M. J. Stephen, Phys. Rev. Lett. 72, 1534 (1994).CrossRefADSGoogle Scholar
  26. 26.
    N. B. Kopnin and V. E. Kravtsov, JETP Lett. 23, 578 (1976); Zh. Éksp. Teor. Fiz. 71, 1644 (1976) [Sov. Phys. JETP 44, 861 (1976)].ADSGoogle Scholar
  27. 27.
    G. E. Volovik, JETP Lett. 57, 244 (1993).ADSGoogle Scholar
  28. 28.
    N. B. Kopnin, G. E. Volovik and Ü. Parts, Europhys. Lett. 32, 651 (1995).Google Scholar
  29. 29.
    G. E. Volovik, JETP Lett. 58, 469 (1993).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1997

Authors and Affiliations

  • G. E. Volovik
    • 1
    • 2
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyEspooFinland
  2. 2.L. D. Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations