Advertisement

Poisson bracket scheme for vortex dynamics in superfluids and superconductors and the effect of the band structure of the crystal

  • G. E. Volovik
Condensed Matter

Abstract

Poisson brackets for the Hamiltonian dynamics of vortices are discussed for 3 regimes, in which the dissipation can be neglected and the vortex dynamics is reversible: (i) The superclean regime, in which the spectral flow is suppressed. (ii) The regime in which the fermions are pinned by the crystal lattice. This includes the regime of extreme spectral flow of fermions in the vortex core: these fermions are effectively pinned by the normal component. (iii) The case when the vortices are strongly pinned by the normal component. All these limits are described by the single parameter C0, the physical meaning of which is discussed for superconductors containing several bands of electrons and holes. The effect of the topology of the Fermi surface on the vortex dynamics is also discussed.

PACS numbers

03.40.Gc 47.37.+q 67.40.Vs 74.60.Ge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. B. Kopnin and V. E. Kravtsov, JETP Lett. 23, 578 (1976); Zh. Éksp. Teor. Fiz. 71, 1644 (1976) [Sov. Phys. JETP 44, 861 (1976)].ADSGoogle Scholar
  2. 2.
    N. B. Kopnin and A. V. Lopatin, Phys. Rev. B 51, 15291 (1995).Google Scholar
  3. 3.
    N. B. Kopnin, G. E. Volovik, and Ü. Parts, Europhys. Lett. 32, 651 (1995).Google Scholar
  4. 4.
    M. Stone, Phys. Rev. B 54, 13222 (1996).Google Scholar
  5. 5.
    I. E. Dzyaloshinskii and G. E. Volovick, Ann. Phys. 125, 67 (1980).MathSciNetGoogle Scholar
  6. 6.
    G. E. Volovik and V. S. Dotsenko Jr., JETP Lett. 29, 576 (1979).ADSGoogle Scholar
  7. 7.
    A. F. Andreev and M. Yu. Kagan, Zh. Éksp. Teor. Fiz. 86, 546 (1984) [Sov. Phys. JETP 59, 318 (1984)].Google Scholar
  8. 8.
    G. E. Volovik, JETP Lett. 57, 244 (1993).ADSGoogle Scholar
  9. 9.
    G. E. Volovik, Zh. Éksp. Teor. Fiz. 104, 3070 (1993) [JETP 77, 435 (1993)].Google Scholar
  10. 10.
    E. B. Sonin, Rev. Mod. Phys. 59, 87 (1987).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964).ADSGoogle Scholar
  12. 12.
    T. Sh. Missirpashaev and G. E. Volovik, Physica B 210, 338 (1995).ADSGoogle Scholar
  13. 13.
    G. E. Volovik and V. P. Mineev, Zh. Éksp. Teor. Fiz. 83, 1025 (1982) [JETP 56, 579 (1982)].MathSciNetGoogle Scholar
  14. 14.
    S. P. Novikov and A. Ya. Mal’tsev, JETP Lett. 63, 855 (1996).CrossRefADSGoogle Scholar
  15. 15.
    Yu. G. Makhlin and G. E. Volovik, JETP Lett. 62, 941 (1995).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1996

Authors and Affiliations

  • G. E. Volovik
    • 1
    • 2
  1. 1.Low Temperature LaboratoryHelsinki University of Technology Otakaari 3AEspooFinland
  2. 2.L. D. Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations