Advertisement

On the Poisson-Lie T-duality in two-dimensional N=2 superconformal field theories

  • S. E. Parkhomenko
Fields, Particles, and Nuclei

Abstract

A supersymmetric generalization of the Poisson-Lie T-duality transformation is proposed. It is shown that N=2 superconformal two-dimensional WZNW models possess natural Poisson-Lie symmetry, which makes it possible to construct Poisson-Lie T-dual σ models.

PACS numbers

11.25.Hf 11.30.Pb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Candelas, X. C. de la Ossa, P. S. Green, and L. Parkes, Nucl. Phys. B 359, 21 (1991).CrossRefADSGoogle Scholar
  2. 2.
    P. Candelas et al., Nucl. Phys. B 341, 383 (1990).CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    L. Brink, M. B. Green, and J. H. Schwartz, Nucl. Phys. B 198, 474 (1982); K. Kikkawa and M. Yamasaki, Phys. Lett. B 149, 357 (1984).ADSGoogle Scholar
  4. 4.
    E. Alvarez and M. A. R. Osorio, Phys. Rev. D 40, 1150 (1989).ADSMathSciNetGoogle Scholar
  5. 5.
    T. H. Busher, Phys. Lett. B 194, 51 (1987); Phys. Lett. B 201, 466 (1988).Google Scholar
  6. 6.
    X. de la Ossa and F. Quevedo, Nucl. Phys. B 403, 377 (1993).ADSGoogle Scholar
  7. 7.
    A. Giveon and M. Rocek, Nucl. Phys. B 421, 173 (1994).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    C. Klimčik and P. Severa, Phys. Lett. B 351, 455 (1995).ADSMathSciNetGoogle Scholar
  9. 9.
    A. Yu. Alekseev, C. Klimčik, and A. A. Tseytlin, “Quantum Poisson-Lie T-duality and WZNW model},” CERN-TH/9521, hep-th/9509123Google Scholar
  10. 10.
    P. DI Veccia, V. G. Knizhnik, J. L. Petersen, and P. Rossi, Nucl. Phys. B 253, 701 (1985).ADSGoogle Scholar
  11. 11.
    A. M. Polyakov and P. B. Wiegmann, Phys. Lett. B 131, 121 (1983).ADSMathSciNetGoogle Scholar
  12. 12.
    Ph. Spindel, A. Sevrin, W. Troost, and A. van Proeyen, Nucl. Phys. B 308, 662 (1988); Nucl. Phys. B 311, 465 (1988/89).CrossRefADSGoogle Scholar
  13. 13.
    S. E. Parkhomenko, Mod. Phys. Lett. A 11, 445 (1996).ADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    S. E. Parkhomenko, Zh. Éksp. Teor. Fiz. 102, 3 (1992) [Sov. Phys. JETP 75, 1 (1992)].MathSciNetGoogle Scholar
  15. 15.
    V. G. Drinfeld, Quantum Groups, Proceedings of the International Congress on Mathematics, Berkeley, 1986, p. 798.Google Scholar
  16. 16.
    M. A. Semenov-Tian-Shansky, Dressing Transformations and Poisson-Group Actions, RIMS, Kyoto University, 1985, Vol. 21, p. 1237.zbMATHMathSciNetGoogle Scholar
  17. 17.
    J.-H. Lu and A. Weinstein, J. Diff. Geom. 31, 501 (1990).MathSciNetGoogle Scholar
  18. 18.
    A. Yu. Alekseev and A. Z. Malkhin, Commun. Math. Phys. 162, 147 (1994).CrossRefGoogle Scholar
  19. 19.
    J. Evans and T. Hollowood, Nucl. Phys. B 352, 723 (1991).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    V. G. Drinfeld, Dokl. Akad. Nauk SSSR 262, 285 (1982) [Sov. Phys. Dokl. 27, 44 (1982)].MathSciNetGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1996

Authors and Affiliations

  • S. E. Parkhomenko
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations