Advertisement

Reflectance fluctuations in an absorbing random waveguide

  • T. Sh. Misirpashaev
  • C. W. J. Beenakker
Miscellaneous

Abstract

We study the statistics of the reflectance (the ratio of reflected and incident intensities) of an N-mode disordered waveguide with weak absorption g per mean free path. Two distinct regimes are identified. The regime γ N2≫1 shows universal fluctuations. With increasing length L of the waveguide, the variance of the reflectance changes from the value 2/15N2, characteristic for universal conductance fluctuations in disordered wires, to another value 1/8N2, characteristic for chaotic cavities. The weak-localization correction to the average reflectance performs a similar crossover from the value 1/3N to 1/4N. In the regime γ N2≫1, the large-L distribution of the reflectance R becomes very wide and asymmetric, P(R)∝(1−R)−2 for R≪1−γN.

PACS numbers

05.40.+j 42.25.Bs 78.20.Ci 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Stone, P. A. Mello, K. A. Muttalib, and J.-L. Pichard, in Mesoscopic Phenomena in Solids, Eds. B. L. Al’tshuler, P. A. Lee, and R. A. Webb, North Holland, Amsterdam, 1991; C. W. J. Beenakker, Rev. Mod. Phys., to appear.Google Scholar
  2. 2.
    R. Blümel and U. Smilansky, Phys. Rev. Lett. 64, 241 (1989).ADSGoogle Scholar
  3. 3.
    H. U. Baranger and P. A. Mello, Phys. Rev. Lett. 73, 142 (1994); R. A. Jalabert, J.-L. Pichard, and C. W. J. Beenakker, Europhys. Lett. 27, 255 (1994).CrossRefADSGoogle Scholar
  4. 4.
    C. W. J. Beenakker and B. Rejaei, Phys. Rev. Lett. 71, 3689 (1993).CrossRefADSGoogle Scholar
  5. 5.
    P. A. Mello, E. Akkermans, and B. Shapiro, Phys. Rev. Lett. 61, 459 (1988); M. J. Stephen, in Mesoscopic Phenomena in Solids, Eds. B. L. Al’tshuler, P. A. Lee, and R. A. Webb, North Holland, Amsterdam, 1991.CrossRefADSGoogle Scholar
  6. 6.
    C. W. J. Beenakker, J. C. J. Paasschens, and P. W. Brouwer, Phys. Rev. Lett. 76, 1368 (1996).CrossRefADSGoogle Scholar
  7. 7.
    G. L. J. A. Rikken and B. A. van Tiggelen, Nature 381, 54 (1996).CrossRefADSGoogle Scholar
  8. 8.
    O. N. Dorokhov, Zh. Éksp. Teor. Fiz. 85, 1040 (1983) [Sov. Phys. JETP 58, 606 (1983)].Google Scholar
  9. 9.
    T. Sh. Misirpashaev, J. C. J. Paasschens, and C. W. J. Beenakker, unpublished.Google Scholar
  10. 10.
    P. A. Mello, Phys. Rev. Lett. 60, 1089 (1988); P. A. Mello and A. D. Stone, Phys. Rev. B 44, 3559 (1991).CrossRefADSGoogle Scholar
  11. 11.
    C. W. J. Beenakker, Phys. Rev. B 47, 15763 (1993).Google Scholar
  12. 12.
    T. Nagao and K. Slevin, J. Math. Phys. 34, 2075, 2317 (1993).ADSMathSciNetGoogle Scholar
  13. 13.
    M. R. Zirnbauer, Phys. Rev. Lett. 69, 1584 (1992).CrossRefADSMATHMathSciNetGoogle Scholar
  14. 14.
    A. Edelman, Linear Algebra Appl. 159, 55 (1991); P. J. Forrester, Nucl. Phys. B 402, 709 (1993).CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    S. Iida, H. A. Weidenmüller, and J. A. Zuk, Phys. Rev. Lett. 64, 583 (1990).CrossRefADSGoogle Scholar
  16. 16.
    N. Argaman, Phys. Rev. B 53, 7035 (1996).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1996

Authors and Affiliations

  • T. Sh. Misirpashaev
    • 1
    • 2
  • C. W. J. Beenakker
    • 3
  1. 1.Instituut-LorentzUniversity of LeidenRA Leidenthe Netherlands
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia
  3. 3.Instituut-LorentzUniversity of LeidenRA Leidenthe Netherlands

Personalised recommendations