Advertisement

Topological quantum characteristics observed in the investigation of the conductivity in normal metals

  • S. P. Novikov
  • A. Ya. Mal’tsev
Methods of Theoretical Physics

Abstract

It is shown that the investigation of the conductivity in a single crystal of a normal metal with a complicated Fermi surface in strong magnetic fields B can reveal integral topological characteristics which are determined by the topology of open-ended quasiclassical electron trajectories. Specifically, in the case of open-ended trajectories of the general position there always exists a direction η orthogonal to B in which the conductivity approaches zero for large B, and this direction lies in some integral (i.e., generated by two reciprocal-lattice vectors) plane that remains stationary for small variations of the direction of B.

PACS numbers

72.15.Cz 72.15.Eb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Lifshitz and V. G. Peschanskii, Zh. Éksp. Teor. Fiz. 35, 1251 (1958) [Sov. Phys. JETP 8, 875 (1959)].Google Scholar
  2. 2.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon Press, New York, 1981 [Russian original, Nauka, Moscow, 1979], Chapter 9, § 84.Google Scholar
  3. 3.
    C. Kittel, Quantum Theory of Solids, John Wiley, New York, 1963.Google Scholar
  4. 4.
    I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Electron Theory of Metals, Consultants Bureau, New York, 1973 [Russian original, Nauka, Moscow, 1971].Google Scholar
  5. 5.
    S. P. Novikov, Usp. Mat. Nauk 37, 3 (1982).zbMATHGoogle Scholar
  6. 6.
    A. V. Zorich, Usp. Mat. Nauk 39, 235 (1984).zbMATHMathSciNetGoogle Scholar
  7. 7.
    S. P. Novikov, in Proceedings of the Conference on Topological Methods in Mathematics, dedicated to the 60th birthday of J. Milnor, June 15–22,1991, SUNY Stony Brook, 1993.Google Scholar
  8. 8.
    I. A. Dynnikov, Mat. Zametki 53, 57 (1993).zbMATHMathSciNetGoogle Scholar
  9. 9.
    S. P. Novikov in Proceedings of the Conference on Geometry, December 15–26, 1993, Tel Aviv University, 1995 (in press).Google Scholar
  10. 10.
    S. P. Tsarev and I. A. Dynnikov, Private communication (1992–93).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1996

Authors and Affiliations

  • S. P. Novikov
    • 1
  • A. Ya. Mal’tsev
    • 2
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandCollege Park
  2. 2.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations