Deformation of a Virasoro algebra and the integrals of motion of the quantum sine-Gordon equation

  • S. V. Kryukov
Methods of Theoretical Physics


A special deformation of a Virasoro algebra such that the screening operator is not deformed (the space where it operates is deformed) is studied. This deformation leads to a 3-index algebra. The residue of the generating function of the generators of this algebra is a generating function of the integrals of motion for the quantum sine-Gordon model. The algebra of generating functions is calculated. Explicit formulas are presented for the first few integrals of motion.


Spectroscopy State Physics Generate Function Elementary Particle Explicit Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Zamolodchikov, Adv. Studies Pure Math. 19, 641 (1989).zbMATHMathSciNetGoogle Scholar
  2. 2.
    D. Friedan, E. Martinec, and S. Shenker, Nucl. Phys. B 271, 93 (1986).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    B. Feigin and E. Frenkel, Phys. Lett. 246, 75 (1990).MathSciNetGoogle Scholar
  4. 4.
    B. Feigin and E. Frenkel, “Integral of motion and quantum groups,” Preprint, hep-th 9310022.Google Scholar
  5. 5.
    V. G. Drinfeld, Sov. Math. Dokl. 36, No. 2 (1988).Google Scholar
  6. 6.
    A. Matsuo, “Jackson integral of Jordan-Pochhammer type and K-2 equation,” Preprint, 1992.Google Scholar
  7. 7.
    A. Matsuo, “Free field realization of q-deformed primary field for U q(ŝl(2)),” Preprint hep-th 9208079, 1992.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1996

Authors and Affiliations

  • S. V. Kryukov

There are no affiliations available

Personalised recommendations