Nearly spherical vesicles: Shape fluctuations

  • E. I. Kats
  • V. V. Lebedev
  • A. R. Muratov
Condensed Matter

Abstract

Isolated vesicles with “insufficient” area have a finite surface tension and spherical shapes, whereas vesicles with “excess” area are necessarily aspherical. We consider the crossover behavior between both kinds of vesicles occurring as the equilibrium area increases. In the mean field approximation it is a second-order phase transition from the spherical to aspherical shape. We demonstrate the fluctuations smear the transition. The critical behavior of the amplitudes of fluctuations and of their characteristic times is investigated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Safran and N. A. Clark, Physics of Complex and Supermolecular Fluids (Wiley, New York, 1987).Google Scholar
  2. 2.
    G. Porte, J. Phys. Condens. Matter 4, 8649 (1992).CrossRefADSGoogle Scholar
  3. 3.
    W. Helfrich, Z. Naturforsch. Teil B 103, 67 (1975).Google Scholar
  4. 4.
    V. V. Lebedev and A. R. Muratov, Sov. Phys. JETP 68, 1011 (1989).Google Scholar
  5. 5.
    E. I. Kats and V. V. Lebedev, Fluctuational Effects in the Dynamics of Liquid Crystals (Springer-Verlag, N.Y., 1993).Google Scholar
  6. 6.
    A. M. Polyakov, Nucl. Phys. B 268, 406 (1986).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    H. Kleinert, Phys. Lett. A 116, 57 (1986).ADSMathSciNetGoogle Scholar
  8. 8.
    F. Broshard, P. G. de Gennes, and P. Pfeuty, J. Phys. (Paris) 37, 1099 (1976).Google Scholar
  9. 9.
    J. Swift, Phys. Rev. A 14, 2274 (1976).CrossRefADSGoogle Scholar
  10. 10.
    S. A. Brazovsky, Sov. Phys. JETP 41, 85 (1975).Google Scholar
  11. 11.
    E. I. Kats, V. V. Lebedev and A. R. Muratov, Phys. Rev. 228, 1 1993).Google Scholar
  12. 12.
    M. B. Schneider, J. T. Jenkinsand W. W. Webb, J. Phys. (Paris) 45, 1457 (1984).Google Scholar
  13. 13.
    M. A. Peterson, Mol. Cryst. Liq. Cryst. 127, 257 (1985).Google Scholar
  14. 14.
    S. T. Milner and S. A. Safran, Phys. Rev. A 36, 4371 (1987).CrossRefADSGoogle Scholar
  15. 15.
    B. Fourcade, M. Mutz, and D. Bensimon, Phys. Rev. Lett. 68, 2251 (1992).ADSGoogle Scholar
  16. 16.
    F. Julicher, U. Seifert, and R. Lipowsky, Phys. Rev. Lett. 71, 452 (1993).ADSGoogle Scholar
  17. 17.
    E. I. Kats and V. V. Lebedev, JETP Lett. 61, 57 (1995).ADSGoogle Scholar
  18. 18.
    E. I. Kats and V. V. Lebedev, JETP Lett. 61, 57 (1995).ADSGoogle Scholar
  19. 19.
    E. I. Kats and V. V. Lebedev, Phys. Rev. E 49, 3003 (1994).CrossRefADSGoogle Scholar
  20. 20.
    R. Bar-Ziv and E. Moses, Phys. Rev. Lett. 73, 1392 (1994).CrossRefADSGoogle Scholar
  21. 21.
    R. Bar-Ziv, R. Menes, E. Moses, and S. A. Safran, Phys. Rev. Lett. 75, 3356 (1995).ADSGoogle Scholar
  22. 22.
    R. Bar-Ziv, T. Frisch, and E. Moses, Phys. Rev. Lett. 75, 3481 (1995).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1996

Authors and Affiliations

  • E. I. Kats
    • 1
  • V. V. Lebedev
    • 1
    • 2
  • A. R. Muratov
    • 3
  1. 1.L. D. Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of PhysicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.Institute for Oil and Gas ResearchRussian Academy of SciencesMoscowRussia

Personalised recommendations