Advertisement

Fermions at a half-quantum vortex

  • G. E. Volovik
Condensed Matter

Abstract

The spectrum of the fermion zero modes in the vicinity of a vortex with fractional winding number is discussed. This is inspired by the observation of the 1/2-vortex in high-temperature superconductors made by [J.R. Kirtley, C.C. Tsuei, M. Rupp et al., Phys. Rev. Lett. 76, 1336 (1996)]. The fractional value of the winding number leads to a frac-tional value of the invariant which describes the topology of the energy spectrum of fermions. This results in the phenomenon of the “half-crossing:” the spectrum approaches zero but does not cross it, being captured at the zero energy level. The similarity with the phenomenon of fermion condensation is discussed.

Keywords

Spectroscopy Vortex State Physics Energy Level Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Kirtley, C. C. Tsuei, M. Rupp et al., Phys. Rev. Lett. 76, 1336 (1996).CrossRefADSGoogle Scholar
  2. 2.
    V. Geshkenbein, A. Larkin, and A. Barone, Phys. Rev. B 36, 235 (1987).CrossRefADSGoogle Scholar
  3. 3.
    G. E. Volovik and V. P. Mineev, JETP Lett. 24, 561 (1976).ADSGoogle Scholar
  4. 4.
    M. E. Zhitomirsky, J. Phys. Soc. Jpn. 64, 913 (1995).CrossRefGoogle Scholar
  5. 5.
    E. V. Thuneberg, Phys. Rev. Lett. 56, 359 (1986).CrossRefADSGoogle Scholar
  6. 6.
    M. M. Salomaa and G. E. Volovik, Rev. Mod. Phys. 59, 533 (1987).CrossRefADSGoogle Scholar
  7. 7.
    G. E. Volovik, JETP Lett. 52, 358 (1990).ADSGoogle Scholar
  8. 8.
    Y. Kondo, J. S. Korhonen, M. Krusius et al., Phys. Rev. Lett. 67, 81 (1991).CrossRefADSGoogle Scholar
  9. 9.
    G. Kharadze and G. Vachnadze, Physica B 210, 334 (1995).CrossRefADSGoogle Scholar
  10. 10.
    M. M. Salomaa and G. E. Volovik, J. Low Temp. Phys. 74, 319 (1989).CrossRefGoogle Scholar
  11. 11.
    G. E. Volovik and L. P. Gor’kov, JETP Lett. 39, 674 (1984).ADSGoogle Scholar
  12. 12.
    M. Sigrist, T. M. Rice, and K. Ueda, Phys. Rev. Lett. 63, 1727 (1989).CrossRefADSGoogle Scholar
  13. 13.
    M. Sigrist, D. B. Bailey, and R. B. Laughlin, Phys. Rev. Lett. 74, 3249 (1995).CrossRefADSGoogle Scholar
  14. 14.
    A. S. Schwarz, Nucl. Phys. B 208, 141 (1982).CrossRefADSGoogle Scholar
  15. 15.
    M. V. Khazan, JETP Lett. 41, 486 (1985).ADSGoogle Scholar
  16. 16.
    J. March-Russel, J. Preskill, and F. Wilczek, Phys. Rev. D 50, 2567 (1992).Google Scholar
  17. 17.
    A. C. Davis and A. P. Martin, Nucl. Phys. B 419, 341 (1994).ADSGoogle Scholar
  18. 18.
    C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964).ADSGoogle Scholar
  19. 19.
    G. E. Volovik, JETP Lett. 57, 244 (1993); Zh. Éksp. Teor. Fiz. 104, 3070 (1993) [JETP 77, 435 (1993)].ADSGoogle Scholar
  20. 20.
    Yu. G. Makhlin and G. E. Volovik, JETP Lett. 62, 737 (1995).ADSGoogle Scholar
  21. 21.
    J. Yang and C.-R. Hu, Phys. Rev. B 50, 16766 (1994).Google Scholar
  22. 22.
    V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  23. 23.
    V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, Phys. Rep. 249, 1 (1994).CrossRefADSGoogle Scholar
  24. 24.
    T. Yokoya, A. Chainani, T. Takahashi et al., Phys. Rev. Lett. 76, 3009 (1996).CrossRefADSGoogle Scholar
  25. 25.
    G. E. Volovik, JETP Lett. 59, 830 (1994).ADSGoogle Scholar
  26. 26.
    G. E. Volovik, JETP Lett. 53, 222 (1991).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 1996

Authors and Affiliations

  • G. E. Volovik
    • 1
    • 2
  1. 1.Low Temperature Laboratory Helsinki University of TechnologyEspooFinland
  2. 2.L. D. Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations