Universality of the ratio of the critical amplitudes of the magnetic susceptibility in a two-dimensional ising model with nonmagnetic impurities

  • O. A. Vasilyev
  • L. N. Shchur
Solids Structure


The behavior of the magnetic susceptibility of a two-dimensional Ising model with nonmagnetic impurities is investigated numerically. A new method for determining the critical amplitudes and critical temperature is developed. The results of a numerical investigation of the ratio of the critical amplitudes of the magnetic susceptibility are presented. It is shown that the ratio of the critical amplitudes is universal right up to impurity concentrations q ≤ 0.25 (the percolation point of a square lattice is qc = 0.407254). The behavior of the effective critical exponent γ(q) of the magnetic susceptibility is discussed. Apparently, a transition from Ising-type universal behavior to percolation behavior should occur in a quite narrow concentration range near the percolation point of the lattice.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. B. Stinchcombe, in Phase Transitions and Critical Phenomena, Ed. by C. Domb and J. L. Lebowitz (Academic, New York, 1983), Vol. 7.Google Scholar
  2. 2.
    W. Selke, L. N. Shchur, and A. L. Talapov, in Annual Reviews of Computational Physics, Ed. by D. Stauffer (World Scientific, Singapore, 1995), Vol. 1.Google Scholar
  3. 3.
    K. Binder and W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer-Verlag, Berlin, 1998).Google Scholar
  4. 4.
    A. B. Harris, J. Phys. C 7, 1671 (1974).ADSGoogle Scholar
  5. 5.
    Vik. Dotsenko and Vl. Dotsenko, Adv. Phys. 32, 129 (1983).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    B. N. Shalaev, Phys. Rep. 237, 129 (1994).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    H.-O. Heuer, Phys. Rev. B 45, 5691 (1992).CrossRefADSGoogle Scholar
  8. 8.
    H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, et al., J. Phys. A 30, 8379 (1997).ADSGoogle Scholar
  9. 9.
    R. Kühn, cond-mat/9405047.Google Scholar
  10. 10.
    J.-K. Kim and A. Patrascioiu, Phys. Rev. B 49, 15764 (1994); Phys. Rev. Lett. 72, 2785 (1994).Google Scholar
  11. 11.
    S. L. A. de Queiroz and R. B. Stinchcombe, Phys. Rev. B 50, 9976 (1994).Google Scholar
  12. 12.
    V. Privman, P. C. Hohenberg, and A. Aharony, in Phase Transitions and Critical Phenomena, Ed. by C. Domb and J. L. Lebowitz (Academic, New York, 1991), Vol. 14.Google Scholar
  13. 13.
    D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1992).Google Scholar
  14. 14.
    R. M. Ziff, Phys. Rev. Lett. 69, 2670 (1992).CrossRefADSGoogle Scholar
  15. 15.
    S. Kirkpatrick and E. Stoll, J. Comput. Phys. 40, 517 (1981).CrossRefMathSciNetGoogle Scholar
  16. 16.
    J. R. Heringa, H. W. J. Blöte, and A. Compagner, Int. J. Mod. Phys. C 3, 561 (1992).ADSGoogle Scholar
  17. 17.
    L. N. Shchur and H. W. J. Blöte, Phys. Rev. E 55, R4905 (1997).CrossRefADSGoogle Scholar
  18. 18.
    L. N. Shchur, H. W. J. Blöte, and J. R. Heringa, Physica A (Amsterdam) 241, 579 (1997).ADSGoogle Scholar
  19. 19.
    J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 (1976).CrossRefADSGoogle Scholar
  20. 20.
    R. H. Swedsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987).ADSGoogle Scholar
  21. 21.
    U. Wolff, Phys. Rev. Lett. 62, 361 (1989).CrossRefADSGoogle Scholar
  22. 22.
    R. G. Edwards and A. D. Sokal, Phys. Rev. D 38, 2009 (1988).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    M. E. Fisher and A. E. Ferdinand, Phys. Rev. B 19, 169 (1967).ADSGoogle Scholar
  24. 24.
    T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Phys. Rev. B 13, 316 (1976).ADSGoogle Scholar
  25. 25.
    D. P. Landau, Phys. Rev. B 13, 2997 (1976).ADSGoogle Scholar
  26. 26.
    A. L. Talapov and L. N. Shchur, J. Phys.: Condens. Matter 6, 8295 (1994).CrossRefADSGoogle Scholar
  27. 27.
    B. Derrida, B. W. Southern, and D. Stauffer, J. Phys. (Paris) 48, 335 (1987).Google Scholar
  28. 28.
    S. Wiseman and E. Domany, Phys. Rev. E 52, 3469 (1995).CrossRefADSGoogle Scholar
  29. 29.
    W. Selke, L. N. Shchur, and O. A. Vasilyev, Physica A (Amsterdam) 259, 388 (1998).Google Scholar
  30. 30.
  31. 31.
    L. N. Shchur, Comput. Phys. Commun. 121/122, 83 (1999).ADSMathSciNetGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • O. A. Vasilyev
    • 1
  • L. N. Shchur
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations