Journal of Experimental and Theoretical Physics

, Volume 89, Issue 4, pp 696–703 | Cite as

Two-dimensional mesoscopic dusty plasma clusters: Structure and phase transitions

  • G. E. Astrakharchik
  • A. I. Belousov
  • Yu. E. Lozovik
Plasma, Gases


A two-dimensional mesoscopic cluster of “dusty plasma” particles, which can be interpreted as a system of microparticles in an rf gas discharge, is investigated. The ground-state configurations and corresponding eigenfrequencies and eigenvectors are found for clusters of N=22–40 particles in a harmonic confining potential. It is shown that a change in the Debye screening length R of the particle charge in the plasma can cause structural transformations of the ground state of the system, manifested as first-order or second-order phase transitions with respect to the parameter R. The disorder (“melting”) of the clusters is analyzed in detail by Monte Carlo simulation and molecular dynamics. By varying the characteristic range of particle interaction in a cluster, it is possible to modulate its thermodynamic properties and the character of the phase transitions, thereby causing a controlled transition of the system into the fully ordered, orientationally disordered, or fully disordered state. The possibility of dusty plasma clusters coexisting in different states is discussed.


Phase Transition Molecular Dynamic Elementary Particle Monte Carlo Simulation Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.-H. Chiang and L. I, Phys. Rev. Lett. 77, 647 (1996).ADSGoogle Scholar
  2. 2.
    W.-T. Juan, Z.-H. Huang, J.-W. Hsu et al., Phys. Rev. E 58, R6947 (1998).Google Scholar
  3. 3.
    A. P. Nefedov, Yu. F. Petrov, and V. E. Fortov, Usp. Fiz. Nauk 167, 1215 (1997); V. E. Fortov, A. P. Nefedov, Yu. S. Vaulina et al., Zh. Éksp. Teor. Fiz. 114, 2004 (1998) [JETP 87, 1087 (1998)].Google Scholar
  4. 4.
    Y. K. Khodataev, S. A. Krapak, A. P. Nefedov, and Yu. F. Petrov, Phys. Rev. E 57, 7086 (1998).CrossRefADSGoogle Scholar
  5. 5.
    V. E. Fortov, A. P. Nefedov, Yu. F. Petrov, A. A. Samaryan, and A. V. Chernyshev, Zh. Éksp. Teor. Fiz. 111, 467 (1997) [JETP 84, 256 (1997)].Google Scholar
  6. 6.
    Yu. E. Lozovik, Usp. Fiz. Nauk 153, 356 (1987) [Sov. Phys. Usp. 30, 912 (1987)]; Yu. E. Lozovik and V. A. Mandelstam, Phys. Lett. A 145, 269 (1990); Phys. Lett. A 165, 469 (1992).Google Scholar
  7. 7.
    V. M. Bedanov and F. M. Peeters, Phys. Rev. B 49, 2667 (1994); V. A. Schweigert and F. M. Peeters, Phys. Rev. B 51, 7700 (1995); I. V. Schweigert, V. A. Schweigert, and F. M. Peeters, Phys. Rev. B 54, 10827 (1996).CrossRefADSGoogle Scholar
  8. 8.
    A. I. Belousov and Yu. E. Lozovik, in Proceedings of the 1998 Conference on Computational Physics (CCP-1998); E-print archive cond-mat/9803300; A. I. Belousov and Yu. E. Lozovik, JETP Lett. 68, 858 (1998).Google Scholar
  9. 9.
    B. Partoens, V. A. Schweigert, and F. M. Peeters, Phys. Rev. Lett. 79, 3990 (1997).CrossRefADSGoogle Scholar
  10. 10.
    Yu. E. Lozovik and E. A. Rakoch, Phys. Rev. B 57, 1214 (1998).CrossRefADSGoogle Scholar
  11. 11.
    L. Cardido, J. P. Rino, N. Studart, and F. M. Peeters, J. Phys.: Condens. Matter 10, 11627 (1998).Google Scholar
  12. 12.
    D. P. Resendes, J. T. Mendonca, and P. K. Shukla, Phys. Lett. A 239, 181 (1998); M. Namby, S. V. Vladimirov, and P. K. Shukla, Phys. Lett. A 203, 40 (1995).CrossRefADSGoogle Scholar
  13. 13.
    A. Melzer, V. A. Schweigert, I. V. Schweigert, A. Homann, S. Peters, and A. Piel, Phys. Rev. E 54, R46 (1996).CrossRefADSGoogle Scholar
  14. 14.
    P. Pieranski, Phys. Rev. Lett. 45, 569 (1980).CrossRefADSGoogle Scholar
  15. 15.
    A. T. Skjeltorp, Phys. Rev. Lett. 51, 2306 (1983).CrossRefADSGoogle Scholar
  16. 16.
    Yu. E. Lozovik and V. A. Mandelstam, Phys. Lett. A 138, 204 (1989).CrossRefADSGoogle Scholar
  17. 17.
    A. P. Nefedov, private communication.Google Scholar
  18. 18.
    R. Blumel, J. M. Chen, E. Peik et al., Nature (London) 334, 309 (1988).ADSGoogle Scholar
  19. 19.
    M. Drewsen, C. Brodensen, L. Hornekar, and J. S. Hangst, Phys. Rev. Lett. 81, 2878 (1998).CrossRefADSGoogle Scholar
  20. 20.
    A. A. Koulakov and B. I. Shklovskii, Phys. Rev. B 57, 2352 (1998).CrossRefADSGoogle Scholar
  21. 21.
    D. J. Wales and R. S. Berry, Phys. Rev. Lett. 73, 2875 (1994); Phys. Rev. Lett. 63, 1156 (1989); R. M. Lynden-Bell and D. J. Wales, J. Chem. Phys. 101, 1460 (1994).CrossRefADSGoogle Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • G. E. Astrakharchik
    • 1
  • A. I. Belousov
    • 1
  • Yu. E. Lozovik
    • 1
  1. 1.Institute of SpectroscopyRussian Academy of SciencesTroitsk, Moscow RegionRussia

Personalised recommendations