Journal of Experimental and Theoretical Physics

, Volume 89, Issue 4, pp 603–611 | Cite as

Topological interpretation of quantum numbers

  • S. A. Bulgadaev
Nuclei, Particles, and Their Interaction


The paper shows how vector topological charges for topological excitations in nonlinear σ-models on compact one-dimensional spaces T G and G/T G can be defined (here G is a simple compact Lie group and T G is its maximal commutative subgroup). Explicit solutions, their energies and interactions between different topological charges have been obtained. A possibility of topological interpretation of quantum numbers of groups and particles is discussed.


Spectroscopy State Physics Field Theory Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Polyakov, JETP Lett. 20, 194 (1974).ADSGoogle Scholar
  2. 2.
    G. ’t Hooft, Nucl. Phys. B 79, 276 (1974).ADSMathSciNetGoogle Scholar
  3. 3.
    A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, Phys. Lett. B 59, 85 (1975).ADSMathSciNetGoogle Scholar
  4. 4.
    A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 114 (1975).Google Scholar
  5. 5.
    D. Mattis, The Theory of Magnetism, Harper & Row Publishers (1965).Google Scholar
  6. 6.
    F. Klein, Vorlesungen über die Entwicklung der Mathematik im 19-zten Jahrhundert, Chelsea Publ. Co., New York, 1967 [Russian transl., Vol. I, Nauka, Moscow, 1989].Google Scholar
  7. 7.
    W. H. Thomson, Trans. Roy. Soc. Edin. 25, 217 (1869); P. G. Tait, On Knots, I, II, III, Scientific Papers, Cambridge University Press, (1900); M. F. Atiyah, The Geometry and Physics of Knots, Cambridge University Press (1990).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press (1989).Google Scholar
  9. 9.
    P. G. De Gennes, Superconductivity of Metals and Alloys, W. A. Benjamin, Inc. (1966).Google Scholar
  10. 10.
    M. D. Frank-Kamenetskii, A. V. Lukashin, and A. V. Vologodskii, Nature (London) 258, 398 (1975); M. D. Frank-Kamenetskii and A. V. Vologidskii, Usp. Fiz. Nauk 134, 641 (1981) [Sov. Phys. Usp. 24, 679 (1981)].CrossRefGoogle Scholar
  11. 11.
    G. E. Volovik, Exotic Properties of Superfluid 3 He, World Scientific, Singapore (1992).Google Scholar
  12. 12.
    R. Rajaraman, Solitons and Instantons, North-Holland, Amsterdam-New York-Oxford (1982).Google Scholar
  13. 13.
    B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry— Methods and Applications, parts I–III, Springer-Verlag, New York, 1984, 1985, 1990 [Russ. original, Nauka, Moscow (1979)].Google Scholar
  14. 14.
    N. Bourbaki, Groupes et algebres de Lie. Chapters IV–VI, Hermann, Paris (1968; Chapters VII, VIII, Hermann, Paris (1975).Google Scholar
  15. 15.
    S. A. Bulgadaev, Nucl. Phys. B 224, 349 (1983); Phys. Lett. B 166, 88 (1986).CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    S. A. Bulgadaev, Phys. Lett. A 125, 299 (1987).CrossRefADSGoogle Scholar
  17. 17.
    S. A. Bulgadaev, JETP Lett. 63, 796 (1996).ADSMathSciNetGoogle Scholar
  18. 18.
    S. A. Bulgadaev, JETP Lett. 63, 780 (1996); E-prints archives, hep-th/990691, hep-th/9909031.ADSMathSciNetGoogle Scholar
  19. 19.
    A. M. Polyakov, Gauge Fields and Strings, Harwood Academic Publishers (1987).Google Scholar
  20. 20.
    G. H. Conway and N. J. A. Sloane, Sphere Packing, Lattices and Groups, Vol. I and II, Springer-Verlag (1988).Google Scholar
  21. 21.
    N. E. Hurt, Geometric Quantization in Action, D. Reidel Publ. Company (1983).Google Scholar
  22. 22.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience Publishers (1969).Google Scholar
  23. 23.
    A. M. Perelomov, Usp. Fiz. Nauk 134, 577 (1981) [Sov. Phys. Usp. 24, 649 (1981)].MathSciNetGoogle Scholar
  24. 24.
    A. M. Perelomov and M. C. Prati, Nucl. Phys. B 258, 647 (1985).CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    D. S. Freed, Flag Manifolds and Infinite Dimensional Kahler Geometry, in Proc. of Intern. Conf. (1985).Google Scholar
  26. 26.
    E. Witten, Phys. Rev. D 16, 2991 (1977).CrossRefADSGoogle Scholar
  27. 27.
    T. Vachaspati, Phys. Rev. Lett. 76, 188 (1996).CrossRefADSGoogle Scholar
  28. 28.
    L. D. Faddeev and A. Niemi, E-print archives, hep-th/9705176.Google Scholar
  29. 29.
    S. A. Bulgadaev, Landau Institute Preprint 29/05/97 (1997).Google Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • S. A. Bulgadaev
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations