Advertisement

Motion of magnetic flux lines in magnetohydrodynamics

  • V. P. Ruban
Fluids

Abstract

A gauge-free description of magnetohydrodynamic flows of an ideal incompressible fluid, which takes into account the freezing-in of the magnetic field and the presence of cross invariants containing the vorticity, is obtained. This description is an extension of the canonical formalism well-known in ordinary hydrodynamics to the dynamics of frozen-in flux lines. Magnetohydrodynamics is studied as the long-wavelength limit of the two-fluid model of a plasma, in which the existence of two frozen-in fields — curls of the generalized momenta of the electron and ion fluids — follows from the symmetry of each component with respect to relabeling of the Lagrangian labels. The cross invariants in magnetohydrodynamics are limits of special combinations of topological invariants of the two-fluid model. A variational principle is formulated for the dynamics of frozen-in magnetic flux lines, and the Casimir functionals of the noncanonical Poisson brackets are found.

Keywords

Vorticity Variational Principle Canonical Formalism Poisson Bracket Incompressible Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, New York) [Russian original, Nauka, Moscow, 1988].Google Scholar
  2. 2.
    R. Salmon, AIP Conf. Proc. 88, 127 (1982).ADSMATHMathSciNetGoogle Scholar
  3. 3.
    R. Salmon, Annu. Rev. Fluid Mech. 20, 225 (1988).CrossRefADSGoogle Scholar
  4. 4.
    N. Padhye and P. J. Morrison, Fiz. Plazmy 22, 960 (1996) [Plasma Phys. Rep. 22, 869 (1996)].Google Scholar
  5. 5.
    V. E. Zakharov and E. A. Kuznetsov, Usp. Fiz. Nauk 167, 1137 (1997).Google Scholar
  6. 6.
    V. I. Il’gisonis and V. P. Lakhin, Fiz. Plazmy 25, 64 (1999) [Plasma Phys. Rep. 25, 58 (1999)].Google Scholar
  7. 7.
    H. Lamb, Hydrodynamics, 6th edition (Cambridge University Press, Cambridge, 1932) [Russian translation, Gostekhizdat, Moscow, 1947].Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York) [Russian original, Nauka, Moscow, 1982].Google Scholar
  9. 9.
    H. K. Moffatt, J. Fluid Mech. 35, 117 (1969).ADSMATHGoogle Scholar
  10. 10.
    K. Elsässer, Phys. Plasmas 1, 3161 (1994).ADSMathSciNetGoogle Scholar
  11. 11.
    V. V. Yan’kov, Zh. Éksp. Teor. Fiz. 107, 414 (1995) [JETP 80, 219 (1995)].Google Scholar
  12. 12.
    E. A. Kuznetsov and V. P. Ruban, JETP Lett. 67, 1076 (1998).CrossRefADSGoogle Scholar
  13. 13.
    E. A. Kuznetsov and V. P. Ruban, Zh. Éksp. Teor. Fiz. 115, 894 (1999) [JETP 88, 492 (1999)].Google Scholar
  14. 14.
    E. A. Kuznetsov and V. P. Ruban, in MHD Waves and Turbulence, Lecture Notes in Physics, edited by T. Passot and P.-L. Sulem (Springer-Verlag, New York, 1999).Google Scholar
  15. 15.
    V. Berdichevsky, Phys. Rev. E 57, 2885 (1998).CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    V. I. Karpman, Nonlinear Waves in Dispersive Media (Nauka, Moscow, 1973).Google Scholar
  17. 17.
    P. J. Morrison and J. M. Greene, Phys. Rev. Lett. 45, 790 (1980).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry (Nauka, Moscow, 1979).Google Scholar
  19. 19.
    M. I. Monastyrskii and P. V. Sasorov, Zh. Éksp. Teor. Fiz. 93, 1210 (1987) [Sov. Phys. JETP 66, 683 (1987)].ADSMathSciNetGoogle Scholar
  20. 20.
    S. S. Moiseev, R. Z. Sagdeev, A. V. Tur, and V. V. Yanovskii, Zh. Éksp. Teor. Fiz. 83, 215 (1982) [Sov. Phys. JETP 56, 117 (1982)].MathSciNetGoogle Scholar
  21. 21.
    B. N. Kuvshinov, Fiz. Plazmy 22, 971 (1996) [Plasma Phys. Rep. 22, 878 (1996)].Google Scholar
  22. 22.
    V. I. Il’gisonis and V. P. Pastukhov, Fiz. Plazmy 22, 228 (1996) [Plasma Phys. Rep. 22, 208 (1996)].Google Scholar
  23. 23.
    V. E. Zakharov and E. A. Kuznetsov, Dokl. Akad. Nauk SSSR 194, 1288 (1970) [Sov. Phys. Dokl. 15, 913 (1970)].Google Scholar
  24. 24.
    V. I. Arnol’d, Mathematical Methods of Classical Mechanics, 2nd edition (Springer-Verlag, New York, 1989) [Russian original, Nauka, Moscow, 1974].Google Scholar
  25. 25.
    A. I. D’yachenko, V. E. Zakharov, and E. A. Kuznetsov, Fiz. Plazmy 22, 916 (1996) [Plasma Phys. Rep. 22, 829 (1996)].Google Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • V. P. Ruban
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations