Advertisement

Collapse in the nonlinear Schrödinger equation

  • Yu. N. Ovchinnikov
  • I. M. Sigal
Atoms, Spectra, Radiation

Abstract

A new class of exact solutions with a singularity at finite time (collapse) is obtained for the nonlinear Schrödinger equation.

Keywords

Spectroscopy State Physics Field Theory Exact Solution Elementary Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Zakharov, Zh. Éksp. Teor. Fiz. 62, 1746 (1972) [Sov. Phys. JETP 35, 908 (1972)].Google Scholar
  2. 2.
    V. E. Zakharov and V. S. Synakh, Zh. Éksp. Teor. Fiz. 68, 940 (1975) [Sov. Phys. JETP 41, 464 (1976)].Google Scholar
  3. 3.
    B. J. LeMesurier et al., Physica D 32, 210 (1988).CrossRefADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    V. I. Talanov, JETP Lett. 11, 199 (1971).ADSGoogle Scholar
  5. 5.
    K. Rypdal, I. Rasmussen, and K. Thomsen, Physica D 16, 339 (1985).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    G. M. Fraiman, Zh. Éksp. Teor. Fiz. 88, 390 (1985) [Sov. Phys. JETP 61, 228 (1985)].ADSMathSciNetGoogle Scholar
  7. 7.
    V. E. Zakharov and E. A. Kuznetsov, Zh. Éksp. Teor. Fiz. 91, 1310 (1986) [Sov. Phys. JETP 64, 773 (1986)].ADSGoogle Scholar
  8. 8.
    Yu. N. Ovchnikov, JETP Lett. 69, 418 (1999).ADSMathSciNetGoogle Scholar
  9. 9.
    V. E. Zakharov and L. N. Shur, Zh. Éksp. Teor. Fiz. 81, 2019 (1981) [Sov. Phys. JETP 54, 1064 (1981)].Google Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • Yu. N. Ovchinnikov
    • 1
  • I. M. Sigal
    • 2
  1. 1.L. D. Landau Institute of Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations