Advertisement

The quantum poisson-Lie T-duality and mirror symmetry

  • S. E. Parkhomenko
Nuclei, Particles, and Their Interaction

Abstract

Poisson-Lie T-duality in quantum N=2 superconformal Wess-Zumino-Novikov-Witten models is considered. The Poisson-Lie T-duality transformation rules of the super-Kac-Moody algebra currents are found from the conjecture that, as in the classical case, the quantum Poisson-Lie T-duality transformation is given by an automorphism which interchanges the isotropic subalgebras of the underlying Manin triple in one of the chirality sectors of the model. It is shown that quantum Poisson-Lie T-duality acts on the N=2 super-Virasoro algebra generators of the quantum models as a mirror symmetry acts: in one of the chirality sectors it is a trivial transformation while in another chirality sector it changes the sign of the U(1) current and interchanges the spin-3/2 currents. A generalization of Poisson-Lie T-duality for the quantum Kazama-Suzuki models is proposed. It is shown that quantum Poisson-Lie T-duality acts in these models as a mirror symmetry also.

Keywords

Spectroscopy State Physics Field Theory Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Giveon, M. Porrati, and E. Rabinovici, Phys. Rep. 244, 79 (1994).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    E. Alvarez, L. Alvarez-Gaume, and Y. Lozano, preprint CERN-TH. 7486/94, E-print archives hep-th/9410237.Google Scholar
  3. 3.
    In Essays on Mirror Manifolds, ed. by S. T. Yau, International Press, Hong Kong (1991).Google Scholar
  4. 4.
    D. R. Morrison and M. R. Plesser, Nucl. Phys. B 440, 279 (1995).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    V. Batyrev and L. A. Borisov, E-print archives alg-geom/9412017.Google Scholar
  6. 6.
    D. R. Morrison and M. R. Plesser, E-print archives hep-th/9508107.Google Scholar
  7. 7.
    B. R. Greene and M. R. Plesser, Nucl. Phys. B 338, 15 (1990).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    A. Cappelli, C. Itzykson and J.-B. Zuber, Nucl. Phys. B 280, 445 (1987).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    B. Greene, E-print archives hep-th/9702155.Google Scholar
  10. 10.
    A. Strominger, S-T. Yau, and E. Zaslow, E-print archives hep-th/9606040.Google Scholar
  11. 11.
    C. Klimcik and P. Severa, Phys. Lett. B 351, 455 (1995).ADSMathSciNetGoogle Scholar
  12. 12.
    X. De la Ossa and F. Quevedo, Nucl. Phys. B 403, 377 (1993).ADSGoogle Scholar
  13. 13.
    A. Giveon and M. Rocek, Nucl. Phys. B 421, 173 (1994); E. Alvarez, L. Alvarez-Gaume, and Y. Lozano, Phys. Lett. B 336, 183 (1994);A.Giveon, E. Rabinovici, and G. Veneziano, Nucl. Phys. B 322, 167 (1989).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    B. E. Fridling and A. Jevicki, Phys. Lett. B 134, 70 (1984); E. S. Fradkin and A. A. Tseytlin, Ann. Phys. 162, 31 (1985); T. Curtright and C. Zachos, Phys. Rev. D 49, 5408 (1994); T. Curtright and C. Zachos, Phys. Rev. D 52, R573 (1995).ADSGoogle Scholar
  15. 15.
    V. G. Drinfield, in Proc. Int. Cong. Math., Berkley, Calif. (1986), p. 798.Google Scholar
  16. 16.
    C. Klimcik and P. Severa, Preprint CERN-TH/95-330, E-print archives hep-th/9512040; C. Klimcik and P. Severa, Preprint CERN-TH/96-142, E-print archives hep-th/9605212; C. Klimcik and P. Severa, Preprint IHES/P/96/70. E-print archives hep-th/9610198; C. Klimcik, Preprint IHES/P/97/58, E-print archives hep-th/9707194.Google Scholar
  17. 17.
    C. Klimcik and P. Severa, Preprint CERN-TH/96-254, E-print archives hep-th/9609112.Google Scholar
  18. 18.
    C. Klimcik and P. Severa, Preprint CERN-TH/95-339, E-print archives hep-th/9512124.Google Scholar
  19. 19.
    E. Tyurin and R. von Unge, E-print archives hep-th/9512025.Google Scholar
  20. 20.
    K. Sfetsos, Preprint THU-96/38, E-print archives hep-th/9611199.Google Scholar
  21. 21.
    K. Sfetsos, E-print archives hep-th/9710163.Google Scholar
  22. 22.
    K. Sfetsos, E-print archives hep-th/9803019.Google Scholar
  23. 23.
    S. E. Parkhomenko, JETP Lett. 64, 877 (1996); S. E. Parkhomenko, Preprint Landau TMP/12/96, E-print archives hep-th/9612034.CrossRefADSGoogle Scholar
  24. 24.
    S. E. Parkhomenko, Preprint Landau TMP/05/97, E-print archives hep-th/9705233.Google Scholar
  25. 25.
    S. E. Parkhomenko, Nucl. Phys. B 510, 623 (1998).CrossRefADSzbMATHMathSciNetGoogle Scholar
  26. 26.
    S. E. Parkhomenko, Mod. Phys. Lett. A 13, 1041 (1998).ADSMathSciNetGoogle Scholar
  27. 27.
    J. Balog, P. Forgas, M. Mohammedi, L. Palla, and J. Schnittger, E-print archives hep-th/9806068.Google Scholar
  28. 28.
    A. Giveon and E. Witten, Preprint IASSNS-HEP-94/30, R1-157-93, E-print archives hep-th/9404184.Google Scholar
  29. 29.
    A. Giveon and E. Kiritsis, Nucl. Phys. B 411, 487 (1994).CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    P. DI Veccia, V. G. Knizhnik, J. L. Petersen, and P. Rossi, Nucl. Phys. B 253, 701 (1985).ADSGoogle Scholar
  31. 31.
    Ph. Spindel, A. Sevrin, W. Troost, and A. van Proeyen, Nucl. Phys. B 308, 662 (1988); Nucl. Phys. B 311, 465 (1988/89).CrossRefADSGoogle Scholar
  32. 32.
    S. E. Parkhomenko, Zh. Éksp. Teor. Fiz. 102, 3 (1992) [Sov. Phys. JETP 85, 1 (1992)].MathSciNetGoogle Scholar
  33. 33.
    S. E. Parkhomenko, Mod. Phys. Lett. A 11, 445 (1996).ADSzbMATHMathSciNetGoogle Scholar
  34. 34.
    M. A. Semenov-Tian-Shansky, RIMS, Kyoto Univ. 21, 1237 (1985). Vol. 21.zbMATHMathSciNetGoogle Scholar
  35. 35.
    A. Yu. Alekseev and A. Z. Malkhin, Commun. Math. Phys. 162, 147 (1994).CrossRefGoogle Scholar
  36. 36.
    J.-H. Lu and A. Weinstein, J. Diff. Geom. 31, 501 (1990).MathSciNetGoogle Scholar
  37. 37.
    A. Yu. Alekseev and I. T. Todorov, Nucl. Phys. B 421, 413 (1994).CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    E. Getzler, Preprint MIT (1994).Google Scholar
  39. 39.
    S. Nam, Phys. Lett. B 187, 340 (1987); E. B. Kiritsis and G. Siopsis, Phys. Lett. B 184, 353 (1987).ADSMathSciNetGoogle Scholar
  40. 40.
    Y. Kazama and H. Suzuki, Nucl. Phys. B 321, 232 (1989).CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    C. Schweigert, Commun. Math. Phys. 149, 425 (1992).CrossRefADSzbMATHMathSciNetGoogle Scholar
  42. 42.
    C. M. Hull and B. Spence, Preprint QMC/PH/89/24 (1989).Google Scholar
  43. 43.
    K. Gawedski and A. Kupiainen, Nucl. Phys. B 320, 625 (1989).ADSGoogle Scholar
  44. 44.
    N. Ohta and H. Suzuki, Preprint OS-GE 01-89 (1989).Google Scholar
  45. 45.
    M. Henningson, Nucl. Phys. B 423, 631 (1994).CrossRefADSzbMATHMathSciNetGoogle Scholar
  46. 46.
    E. Kiritsis, E-print archives hep-th/9406082.Google Scholar
  47. 47.
    M. Yu. Lashkevich, Int. J. Mod. Phys. A 8, 5673 (1993); Mod. Phys. Lett. A 8, 851 (1993).ADSzbMATHMathSciNetGoogle Scholar
  48. 48.
    D. Gepner, Nucl. Phys. B 296, 757 (1988); Phys. Lett. B 199, 380 (1987).CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    T. Eguchi, H. Ooguri, A. Taormina and S. K. Yang, Nucl. Phys. B 315, 193 (1989): A. Taormina, Preprint CERN-TH.5409/89.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • S. E. Parkhomenko
    • 1
  1. 1.Landau Institute for Theoretical PhysicsChernogolovka, Moscow RegionRussia

Personalised recommendations